particle deformation
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 22)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Jubier Alonso Jiménez-Camargo ◽  
Dora Carreon-Freyre

Abstract This paper describes the role of fabric anisotropy during clayey soil deformation. A set of triaxial tests was performed on vertical and horizontal specimens of undisturbed smectite lake sediments from Jurica, Queretaro in Mexico. The results allowed to analyze the influence of bedding and discontinuities on the mechanical behavior of Jurica clays after failure. Tests with applied low strain rates allowed pore pressure equalization within specimens with different gravimetric water content and degree of saturation. Shear failure results of undrained tests showed that deformation distributes differently in both horizontal and vertical directions and that stress may be dissipated by pore collapses, fractures and particle deformation. The experimental evidence suggests that microfabric is a relevant variable in the overall mechanical response of clayey sediments that depends on the natural fabric (bedding and discontinuities), mineralogy, and water content. A detailed analysis of Young´s Moduli (E) showed the high variability of this parameter from 108 to 409 kg/cm2 (calculated at 30% of σdmax) and its dependence on the orientation of the specimen and the water content. In addition, p’-q’ graphs illustrate the relevance of considering mechanical anisotropy in clays and provide further insights to understand the role of smectites in progressive shear deformation.


Author(s):  
Lorena Perez ◽  
Jake Colburn ◽  
Luke N. Brewer ◽  
Michael Renfro ◽  
Tim McKechnie

Abstract In this work; Inconel 718 gas-atomized powder was successfully heat treated over the range of 700-900°C. As-atomized and as-heat treated powders were cold sprayed with both nitrogen and helium gasses. Cold spray of high strength materials is still challenging due to their resistance to particle deformation affecting the resulting deposit properties. Powder heat treatment to modify its deformation behavior has recently been developed for aluminum alloy powders; however; there is no literature reported for Inconel 718 powders. The microstructural evolution of the powder induced by the heat treatment was studied and correlated with their deformation behavior during the cold spray deposition. Deposits sprayed with heat-treated powders at 800 and 900 °C and nitrogen showed less particle deformation and higher porosity as compare to as-atomized deposit associated to the presence of delta phase in the powders precipitated by the heat treatment. In contrast; deposits sprayed with helium using both powder conditions; as-atomized and as heat-treated powders; showed high particle deformation and low porosity indicating that the type of gas has a greater effect on the particle deformation than the delta phase precipitated in the heat-treated powders. These results contribute to understanding the role of powder microstructure evolution induced by heat treatment on the cold spray deposits properties.


Author(s):  
R. Kromer ◽  
R.N. Raoelison ◽  
Y. Danlos ◽  
C. Verdy ◽  
S. Costil ◽  
...  

Abstract Cold spray process was chosen as a good candidate for dimensional restoration and protection of components. Commercially pure aluminum; aluminum-alloy or titanium were recommended for different applications. This paper investigates laser surface texturing association to enhance durability of sprayed coatings. Laser is easy automated; localized and reliable process. It was applied for prior-surface treatment. Textured surfaces were produced and compared to conventional treatments; such as grit-blasting; in terms of deposition efficiency and adhesion bond strength. Patterns promoted direct particle embedment. Particle-substrate interface exhibited significant temperature rate and strain in cavities. Intimate contacts and particle compressive states were assumed responsible for improvement. The particle deformation and bonding behaviors were evaluated and discussed for the different configurations. Thus; window of deposition was increased with laser surface texturing. Anchoring mechanisms increased two fold the adhesion strength compared to conventional pre-treatments. In one case; the interface was stronger than the coating cohesive strength.


Author(s):  
D. Dzhurinskiy ◽  
S. Dautov ◽  
P. Shornikov ◽  
I. Sh. Akhatov

Abstract Severe plastic deformation (SPD) is the main feature of the Cold Spray (CS) process; which might result in producing metal grain refinement under extensive hydrostatic pressure and high strain rate loading conditions. In this study; an anisotropic strain gradient plasticity model (SGP) is presented to predict materials behavior in CS process. The enhanced dislocation densities produced throughout particle deformation affect coating material properties and modify their thermodynamic characteristics and kinetic of resistance to plastic deformations. This study also demonstrates that the SGP model can describe the experimentally observed trends and account for homogenization of the accumulated strains under dynamic recrystallization conditions. The evolution of statistically stored dislocation density through the characteristic material length scale parameter is in good agreement with experimental results and data reported by other research groups. The proposed SGP modeling is suggested as an express method to evaluate the advanced coating and additively manufactured materials; and powder feedstock used in thermal spray and 3D manufacturing applications.


2021 ◽  
Author(s):  
P. Khamsepour ◽  
C. Moreau ◽  
A. Dolatabadi

Abstract Additive manufacturing processes have been used to produce or repair components in different industry sectors like aerospace, automotive, and biomedical. In these processes, a part can be built by either melted particles as in selective laser melting (SLM) or solid-state particles as in the cold spray process. The cold spray has gained significant attention due to its potential for high deposition rate and nearly zero oxidation. However, the main concern associated with using the cold spray is the level of porosity in as-fabricated samples, altering their mechanical properties. These pores are primarily found in the regions where adiabatic shear instability does not occur. It is worth noting that the deformation of the impacted solid particle plays a vital role in reaching the shear instability. Therefore, for investigating the adiabatic shear instability region, an elastic-plastic simulation approach has been used. For this purpose, it is assumed that an elevated temperature solid Ti6Al4V particle impacts on a stainless-steel substrate surface at high velocity. The results show that increasing particle temperature will significantly enhance particle deformation because of thermal softening. Additionally, they illustrate that a material jet responsible for producing a bonding between particle and substrate by ejecting the broken oxide layer will be formed when the particle has a temperature above 1073 K and substrate remains at room temperature. In the end, it should be noted that increasing particle temperature up to 723 K will not have a significant effect on substrate deformation and final substrate temperature.


2021 ◽  
Author(s):  
Baihua Ren ◽  
Jun Song

Abstract Recently, cold spray (CS) technology has attracted extensive interest as an alternative to thermal spray methods to build a coating, which uses high kinetic energy solid particles to impact and adhere to the substrate. To date, numerous numerical studies have been carried out to investigate the deposition processes and associated mechanisms during multiple particle impact in CS. However, in the commonly used numerical techniques, the individual powder particles are often treated separately from one another, thus fail to properly consider the adhesion mechanisms during deposition. In this study, we propose a new numerical approach on base of peridynamics (PD), which incorporates interfacial interactions as a part of constitutive model to capture deformation, bonding and rebound of impacting particles in one unified framework. Two models are proposed to characterize the adhesive contacts: a) a long-range Lenard-Johns type potential that reproduce the mode I fracture energy by suitable calibrations, and b) a force - stretch relation of interface directly derived from the bulk materials mode I fracture simulations. The particle deformation behavior modeled by the peridynamic method compares well with the benchmark finite element method results, which indicates the applicability of the peridynamic model for CS simulation. Furthermore, it is shown that the adhesive contact models can accurately describe interfacial bonding between the powder particles and substrate.


2021 ◽  
Author(s):  
Jack G. Gaskell ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Abstract The secondary air system and cooling passages of gas turbine components are prone to blockage from sand and dust. Prediction of deposition requires accurate models of particle transport and thermo-mechanical interaction with walls. Bounce stick models predict whether a particle will bounce, stick, or shatter upon impact and calculate rebound trajectories if applicable. This paper proposes an explicit bounce stick model that uses analytical solutions of adhesion, plastic deformation and viscoelasticity to time-resolve collision physics. The Discrete-Element Methods (DEM) model shows good agreement when compared to experimental studies of micron and millimetre-scale particle collisions, requiring minimal parametric fitting. Non-physical values mechanical properties, artifices of previous models, are thus eliminated. Further comparison is made to the best resolved and industry standard semi-empirical models available in literature. In addition to coefficients of restitution, other variables crucial to accurately model rebound, for example angular velocity, are predicted. The time-stepping explicit approach allows full coupling between internal processes during contact, and shows that particle deformation and hence viscoelasticity play a significant role in adhesion. Modelling time-dependent internal variables such as wall-normal force create functionality for future modelling of arbitrarily shaped particles, the physics of which has been shown by previous work to differ significantly from that of spheres. To date these effects have not been captured well using by higher-level energy-based models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anuj Bisht ◽  
Raj Kiran Koju ◽  
Yuanshen Qi ◽  
James Hickman ◽  
Yuri Mishin ◽  
...  

AbstractThe classic paradigm of physical metallurgy is that the addition of alloying elements to metals increases their strength. It is less known if the solution-hardening can occur in nano-scale objects, and it is totally unknown how alloying can impact the strength of defect-free faceted nanoparticles. Purely metallic defect-free nanoparticles exhibit an ultra-high strength approaching the theoretical limit. Tested in compression, they deform elastically until the nucleation of the first dislocation, after which they collapse into a pancake shape. Here, we show by experiments and atomistic simulations that the alloying of Ni nanoparticles with Co reduces their ultimate strength. This counter-intuitive solution-softening effect is explained by solute-induced local spatial variations of the resolved shear stress, causing premature dislocation nucleation. The subsequent particle deformation requires more work, making it tougher. The emerging compromise between strength and toughness makes alloy nanoparticles promising candidates for applications.


2021 ◽  
Vol 60 ◽  
pp. 8-20 ◽  
Author(s):  
Quan-xin Shi ◽  
Cui-ju Wang ◽  
Kun-kun Deng ◽  
Kai-bo Nie ◽  
Yucheng Wu ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 1325-1330
Author(s):  
Mala M. Sharma ◽  
Kiran G. Judd ◽  
Jeremy M. Schreiber ◽  
Timothy J. Eden

The rapid development of cold spray technology has made it a viable option to repair and remanufacture damaged components as well as to create novel materials for biomedical applications. One of the most influential parameters of this distinctive process is the deposition velocity, which ultimately controls the degree of material deformation and material adhesion. Although the majority of materials can be successfully deposited at relative low deposition velocity (<700m/s), this is not representative of Ti alloys which have high yield strength. The amount of deformation and resultant properties of the coating are related to the velocity, temperature, and tensile strength of the particles. The ability to predict the deformation and resultant properties helps in developing process parameters and tailoring coatings to get the desired properties. In the current study, the particle deformation behavior and bonding with the substrate was investigated over a range of impact conditions. The effects of deposition velocity, gas temperature, gas pressure and nozzle stand-off distance were studied using cold sprayed splats of spherical Ti-6Al-4V powder deposited on to 316 SS substrate utilizing helium as a carrier gas. Finite element modeling of the impacted particles was conducted using Johnson-Cook high-strain-rate properties in a Lagrangian analysis to predict the overall deformation and estimated stress state of the impacted particles. Particle temperature due to impact was also predicted. Overall predictions were in good agreement with experimental results. Optical microscopy, scanning electron microscopy (SEM) and focused ion beam (FIB) were used to identify three distinct regions within the impact morphologies; these include the initial impact region, the jetting region, and the upper splat region.


Sign in / Sign up

Export Citation Format

Share Document