Thermal Spray 2021: Proceedings from the International Thermal Spray Conference
Latest Publications


TOTAL DOCUMENTS

37
(FIVE YEARS 37)

H-INDEX

0
(FIVE YEARS 0)

Published By ASM International

9781627083881

Author(s):  
Shaowu Liu ◽  
Michel Moliere ◽  
Hanlin Liao

Abstract In this work; a novel liquid fuel HVOF process fueled with ethanol was used to prepare 75wt%Cr3C2–25wt%NiCr coatings on AISI304 stainless steel substrate. Taguchi method was employed to optimize the spray parameters (ethanol flow rate; oxygen flow rate; powder feed rate and standoff distance) to achieve better erosion resistance at 90° impact angle. The results indicated that ethanol flow rate and oxygen flow rate were identified as the highly contributing parameters on the erosion wear loss. The important sequence of the spray parameter is ethanol flow rate > oxygen flow rate > standoff distance > powder feed rate. The optimal spray parameter (OSP) for minimum erosion wear loss was obtained under ethanol flow rate of 28slph; oxygen flow rate of 420slpm; powder feed rate of 76.7 g/min and standoff distance of 300mm. The phase composition; microstructure; hardness; porosities; and the erosion wear behaviors of the coatings have been studied in detail. Besides; erosion wear testing of the optimized coating was conducted at 30°; 60° and 90° impact angle using air jet erosion testing machine. The SEM images of the erodent samples were taken to analyze the erosion mechanism.


Author(s):  
P. Pathak ◽  
D. Dzhurinskiy ◽  
A. Elkin ◽  
P. Shornikov ◽  
S. Dautov ◽  
...  

Abstract The abradable coatings had significantly enhanced turbomachinery performance by acting as a sacrificial seal between rotating blades and stationary casing. Further improvement in seal design to meet the higher energy demand and increase the service time has been the key challenges to solve in the gas turbine industry. Honeycomb seals have become the industry standard clearance seal technique due to their unique design and high structural strength with minimum weight. The present study proposes a concept to form a thermal shock resistance structure to achieve higher temperature capability and improve the reliability of abradable seal structures. A cavity layer of honeycomb seal structure made of SS 321 alloy was coated with advanced high-temperature ZrO2+7.5%Y2O3+4% polyester seal material using TriplexPro-210 plasma spray system. The integrity of a seal structure was assessed by a cross-sectional analysis and evaluation of the coating microstructure. Additionally; the microhardness test was performed to estimate coating fracture toughness; and Object-Oriented Finite Element analysis was used to assess its thermo-mechanical performance. The concept proposed in this study should be further validated to develop the most capable innovative technology for advanced gas turbine abradable seal structures.


Author(s):  
K.R. Yu ◽  
C.V. Cojocaru ◽  
F. Ilinca ◽  
E. Irissou

Abstract In an atmospheric plasma spray (APS) process; in-flight powder particle characteristics; such as the particle velocity and temperature; have significant influence on the coating formation. The nonlinear relationship between the input process parameters and in-flight particle characteristics is thus of paramount importance for coating properties design and quality control. It is also known that the ageing of torch electrodes affects this relationship. In recent years; machine learning algorithms have proven to be able to take into account such complex nonlinear interactions. This work illustrates the application of ensemble methods based on decision tree algorithms to evaluate and to predict in-flight particle temperature and velocity during an APS process considering torch electrodes ageing. Experiments were performed to record simultaneously the input process parameters; the in-flight powder particle characteristics and the electrodes usage time. Various spray durations were considered to emulate industrial coating spray production settings. Random forest and gradient boosting algorithms were used to rank and select the features for the APS process data recorded as the electrodes aged and the corresponding predictive models were compared. The time series aspect of the data will be examined.


Author(s):  
Florentina-Luiza Zavalan ◽  
Aldo Rona

Abstract The generation of a high velocity carrier gas flow for cold metal particle applications is addressed; with specific focus on titanium cold spraying. The high hardness of this material makes cold spraying titanium difficult to achieve by industry standard nozzles. The redesign of a commercial conical convergent-divergent cold spray nozzle is achieved by the application of aerospace design codes; based on the Method of Characteristics; towards producing a more isentropic expansion by contouring the nozzle walls. Steady threedimensional RANS SST k-ω simulations of nitrogen are coupled two-way to particle parcel tracking in the Lagrangian frame of reference. The new contoured nozzle is found to produce higher particle velocities with greater radial spread; when operated at the same conditions/cost of operation as the commercial nozzle. These numerical results have shown the potential for extending cold spray to high density and low ductility particles by relatively minor rig modifications; through an effective synergy between gas dynamics and material science.


Author(s):  
Saeed Rahmati ◽  
Bertrand Jodoin ◽  
R.G.A. Veiga ◽  
A. Zúñiga

Abstract In this study; a new physically-based finite element approach is proposed to model and predict the superficial oxide layer removal and the occurrence of localized metallic bonding during particle impacts. The process physics; based on explosive welding theory and experiments; and method implementation is presented. Prediction of critical velocity of copper is obtained and compared to experimental data to validate the model. Moreover; the model is also able to show the bonding locations at the interface between particles and substrate. The predicted bonding locations are consistent with experimental data from literature for several metals.


Author(s):  
Filofteia-Laura Toma ◽  
Julia Sagel ◽  
Christoph Leyens ◽  
Karel Slámečka ◽  
Serhii Tkachenko ◽  
...  

Abstract Intensive R&D work of more than one decade has demonstrated many unique coating properties; particularly for oxide ceramic coatings fabricated by suspension thermal spraying technology. Suspension spraying allows producing yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC) with columnar microstructure; similar to those produced by electron-beam physical vapor deposition (EB-PVD); and vertically cracked morphologies; with a generally low thermal conductivity. Therefore; suspension sprayed YSZ TBCs are seen as an alternative to EB-PVD coatings and those produced by conventional air plasma spray (APS) processes. Nonetheless; the microstructure of the YSZ topcoat is strongly influenced by the properties of the metallic bondcoat. In this work; direct laser interference patterning (DLIP) was applied to texture the surface topography of Ni-alloy based plasma sprayed bondcoat. Suspension plasma spraying (SPS) was applied to produce YSZ coatings on top of as-sprayed and laser-patterned bondcoat. The samples were characterized in terms of microstructure; phase composition and thermal cycling performance. The influence of the bondcoat topography on the properties of suspension sprayed YSZ coatings is presented and discussed.


Abstract Listings of the organizing committees and proceedings editors for the International Thermal Spray Conference 2021.


Author(s):  
O. Kovarik ◽  
J. Cizek ◽  
S. Yin ◽  
R. Lupoi ◽  
M. Janovska ◽  
...  

Abstract Diamond-reinforced composites prepared by cold spray are emerging materials simultaneously featuring outstanding thermal conductivity and wear resistance. Their mechanical and fatigue properties relevant to perspective engineering applications were investigated using miniature bending specimens. Cold sprayed specimens with two different mass concentrations of diamond 20% and 50% in two metallic matrices (Al – lighter than diamond; Cu – heavier than diamond) were compared with the respective pure metal deposits. These pure metal coatings showed rather limited ductility. The diamond addition slightly improved ductility and fracture toughness of the Cu-based composites; having a small effect also on the fatigue crack growth resistance. In case of the Al composites; the ductility as well as fatigue crack growth resistance and fracture toughness have improved significantly. The static and fatigue failure mechanisms were fractographically analyzed and related to the microstructure of the coatings; observing that particle decohesion is the primary failure mechanism for both static and fatigue fracture.


Author(s):  
Jan Cizek ◽  
Monika Vilemova ◽  
Frantisek Lukac ◽  
Martin Koller ◽  
Jan Kondas ◽  
...  

Abstract Owing to the COVID situation and transfer of manuscripts from ITSC 2020; this paper presents a shortened version of experiments and results that were recently published in a standard journal. For more details; please refer to the source [1]. Numerous obstacles are still to be resolved before power sources based on nuclear fusion could be employed. One of the major challenges are the materials used for construction of the main reactor vessels. In tokamaks; torus-shaped fusion facilities confining the hot plasma by strong magnetic fields; the innermost chambers are to be coated with dense coatings of W-based alloys. So far; the attempts for such coatings formation by other methods failed due to oxidation; high porosity; insufficient adhesion; high specific surface; or even insufficient thickness below 10 μm. Cold spraying seems a promising technology for the task. Here we demonstrate a successful fabrication of thick W; W-Cr and W-Cr-Ti coatings prepared without oxidation of the metals. For the first time in history; a deposition of 80 μm-thick coating of pure W was achieved.


Author(s):  
Kang Yuan ◽  
Zhaoran Zheng

Abstract In this paper; a diffusion kinetic model was applied to simulate the microstructure development in a MCrAlY-superalloy system at high temperatures. Both simulation and experimental results showed that γ+γ’ microstructure was obtained in the coatings due to Al depletion after oxidation. With the help of the modelling; the mechanism of the formation of the diffusion zones in the single crystal (SC) superalloy can be also analyzed. The results revealed that the inward diffusion of Al from coating affected the depth of secondary reaction zone (SRZ) with the precipitation of TCP phases while the depth of inter-diffusion zone (IDZ) was decided by the inward diffusion of Cr.


Sign in / Sign up

Export Citation Format

Share Document