Process Modeling in Cold Forging Using Finite-Element Analysis

2005 ◽  
pp. 237-246
Author(s):  
Prashant Mangukia
2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


2013 ◽  
Vol 27 (10) ◽  
pp. 2979-2984
Author(s):  
Dongbum Kim ◽  
Sungwook Kim ◽  
Inchul Song ◽  
Byungcheol Jeon ◽  
Inhwan Lee ◽  
...  

Author(s):  
Y B Park ◽  
D Y Yang

In metal forming, there are problems with recurrent geometric characteristics without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear (which is industrially useful and geometrically complicated) has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. The three-dimensional deformed pattern by the finite element analysis is shown, and the forging load is compared with the experimental load. The profiles of the free surface of the workpiece show good agreement between the computation and the experiment.


2021 ◽  
Vol 64 ◽  
pp. 349-355
Author(s):  
Misael Dalbosco ◽  
Gabriel da Silva Lopes ◽  
Pedro David Schmitt ◽  
Luciano Pinotti ◽  
Denis Boing

Sign in / Sign up

Export Citation Format

Share Document