Finite element analysis for temperature distributions in a cold forging

2013 ◽  
Vol 27 (10) ◽  
pp. 2979-2984
Author(s):  
Dongbum Kim ◽  
Sungwook Kim ◽  
Inchul Song ◽  
Byungcheol Jeon ◽  
Inhwan Lee ◽  
...  
2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


Author(s):  
David Ross-Pinnock ◽  
Glen Mullineux

Control of temperature in large-scale manufacturing environments is not always practical or economical, introducing thermal effects including variation in ambient refractive index and thermal expansion. Thermal expansion is one of the largest contributors to measurement uncertainty; however, temperature distributions are not widely measured. Uncertainties can also be introduced in scaling to standard temperature. For more complex temperature distributions with non-linear temperature gradients, uniform scaling is unrealistic. Deformations have been measured photogrammetrically in two thermally challenging scenarios with localised heating. Extended temperature measurement has been tested with finite element analysis to assess a compensation methodology for coordinate measurement. This has been compared to commonly used uniform scaling and has outperformed this with a highly simplified finite element analysis simulation in scaling a number of coordinates at once. This work highlighted the need for focus on reproducible temperature measurement for dimensional measurement in non-standard environments.


Author(s):  
Y B Park ◽  
D Y Yang

In metal forming, there are problems with recurrent geometric characteristics without explicitly prescribed boundary conditions. In such problems, so-called recurrent boundary conditions must be introduced. In this paper, as a practical application of the proposed method, the precision cold forging of a helical gear (which is industrially useful and geometrically complicated) has been simulated by a three-dimensional rigid-plastic finite element method and compared with the experiment. The application of recurrent boundary conditions to helical gear forging analysis is proved to be effective and valid. The three-dimensional deformed pattern by the finite element analysis is shown, and the forging load is compared with the experimental load. The profiles of the free surface of the workpiece show good agreement between the computation and the experiment.


Sign in / Sign up

Export Citation Format

Share Document