scholarly journals Boosting of Existing Algorithms with Boundary Reduction for Shortest Path Problem

Informatica ◽  
2021 ◽  
Vol 45 (7) ◽  
Author(s):  
Wei Wei ◽  
Weidong Yang ◽  
Heyang Xu
Author(s):  
Zhihui Yang ◽  
Huiwen Xia ◽  
Fuwen Su ◽  
Jiayu Zhao ◽  
Fan Feng

Author(s):  
Rashed Khanjani-Shiraz ◽  
Ali Babapour-Azar ◽  
Zohreh Hosseini-Noudeh ◽  
Panos M. Pardalos

2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Lilla Beke ◽  
Michal Weiszer ◽  
Jun Chen

AbstractThis paper compares different solution approaches for the multi-objective shortest path problem (MSPP) on multigraphs. Multigraphs as a modelling tool are able to capture different available trade-offs between objectives for a given section of a route. For this reason, they are increasingly popular in modelling transportation problems with multiple conflicting objectives (e.g., travel time and fuel consumption), such as time-dependent vehicle routing, multi-modal transportation planning, energy-efficient driving, and airport operations. The multigraph MSPP is more complex than the NP-hard simple graph MSPP. Therefore, approximate solution methods are often needed to find a good approximation of the true Pareto front in a given time budget. Evolutionary algorithms have been successfully applied for the simple graph MSPP. However, there has been limited investigation of their applications to the multigraph MSPP. Here, we extend the most popular genetic representations to the multigraph case and compare the achieved solution qualities. Two heuristic initialisation methods are also considered to improve the convergence properties of the algorithms. The comparison is based on a diverse set of problem instances, including both bi-objective and triple objective problems. We found that the metaheuristic approach with heuristic initialisation provides good solutions in shorter running times compared to an exact algorithm. The representations were all found to be competitive. The results are encouraging for future application to the time-constrained multigraph MSPP.


2012 ◽  
Vol 09 ◽  
pp. 488-494
Author(s):  
WAN NOR MUNIRAH ARIFFIN ◽  
SHAZALINA MAT ZIN ◽  
SHAHARUDDIN SALLEH

Switching is a technique to route data and instructions between pairs of source-destination nodes or among multiple nodes for broadcast communication. We realized that the shortest path problem has a wide application in the design of networks. Therefore, in this paper, we present a mesh network as our switching mechanism for computing the shortest path between the source and destination in our simulation model, developed using C++ on the Windows environment. The Floyd-Warshall algorithm is applied in finding the shortest path in all-pairs nodes.


Sign in / Sign up

Export Citation Format

Share Document