scholarly journals SIMPLIFIED METHOD FOR EVALUATION OF THE SPEED CHANGE ON MIXTURE FORMATION OF DIFFERENT LIQUIDS PUMPED BY BATCHING METHOD

Author(s):  
М. D. Serediuk

A simplified method that allows considering the influence of linear and non-linear speed change on the mixing intensity of different oil or petroleum products in the process of sequential pumping was developed. The calculation formulas for distribution of concentrations of liquids along the length of the mixture zone, for its volume and expansion at the pipeline terminal point were proposed.'

2011 ◽  
Vol 25 (6) ◽  
pp. 2157-2168 ◽  
Author(s):  
Luisa F. Villa ◽  
Aníbal Reñones ◽  
Jose R. Perán ◽  
Luis J. de Miguel

1993 ◽  
Vol 7 (5) ◽  
pp. 435-455 ◽  
Author(s):  
Thomas Von Raumer ◽  
Jean Michel Dion ◽  
Luc Dugard

Author(s):  
S. Ginestet ◽  
C. Le Bot

Fire around storage tanks for petroleum products can have disastrous consequences for the environment and the population. These fires, due to accident or arson, are very well managed by security divisions but, nevertheless, involve the release of an amount of vapour from the petroleum present in the storage device. The exposure of a non-refrigerated aboveground liquid petroleum or petroleum product storage tank to fire can also lead to internal overpressure. PV-valves ensure that the normal and emergency venting requirements are satisfied, and determination of such requirements is key for the safety of petroleum tanks and should not be underestimated. This paper presents and discusses some methods that can be used to evaluate the vapour flow. In the aim of finding an exact answer rapidly, a thermal analytical approach is first investigated, which reveals the complexity of the solution. Thus, a numerical approach, based on finite-volume description, is used to set the first steps of the flow assessment. Based on a thermodynamic hypothesis, a simplified method is finally put forward for the evaluation of the amount of vapour released. The algorithm used to determine how temperature, pressure and flow evolve over time, which is very useful information for the safety of these devices, is then detailed and the results discussed.


2019 ◽  
Vol 68 (1) ◽  
pp. 223-232
Author(s):  
Daveena S. Banda ◽  
Maria M. Beitzel ◽  
Joseph D. Kammerer ◽  
Isaac Salazar ◽  
Robert G. Lockie

AbstractBasketball players need to sprint and change direction, and lower-body power (often measured by jump tests) should contribute. How different jumps relate to linear and change-of-direction (COD) speed, and high-intensity running has not been analyzed in Division I (DI) collegiate women’s basketballers. Twelve players completed the vertical jump (VJ), two-step approach jump (AppJ), and standing broad jump (SBJ). Average (AvgP) and peak power (PeakP), and PeakP: body mass (P:BM) were derived from VJ height; relative SBJ was derived from SBJ distance. Players also completed: 10 m and ¾ court sprints (linear speed), the pro-agility shuttle (COD speed), and the Yo-Yo Intermittent Recovery Test Level 1 (YYIRT1; high-intensity running). Pearson’s correlations (p < 0.05) calculated relationships between the jump and running tests. The AppJ correlated to the ¾ court sprint and pro-agility shuttle (r = -.663 to -.805). AvgP and PeakP correlated to the 10 m sprint, ¾ court sprint, and pro-agility shuttle (r = .589-.766). P:BM and relative SBJ correlated with all running tests (linear and COD speed r = -.620 to -.805; YYIRT1 r = .622.803). The AppJ stresses the stretch-shortening capacities of the legs, and this quality is important for faster linear and COD speed. AvgP and PeakP are influenced by body mass; while larger athletes produce greater power, they also may display slower 10 m sprint and pro-agility shuttle times, and lesser YYIRT1 performance. Strength coaches should ensure players can generate high relative power (i.e. P:BM, relative SBJ) for faster linear and COD speed, and high-intensity running.


Sign in / Sign up

Export Citation Format

Share Document