scholarly journals Regarding some mechanical properties of terrace board made of wood-polymer composites with different filler

2021 ◽  
Vol 12 (2) ◽  
pp. 33-39
Author(s):  
N. V. Buiskykh

One of the areas of wood waste processing is their use in the production of wood-polymer composites (WPC). The relevance of wood-polymer products is due to the wide range of applications and qualities of this material. WPC does not rot, is not damaged by insects and fungi, does not contain harmful binders. Products from the duodenum do not crack, do not gouge, are waterproof, which makes them an excellent material for manufacturing a terrace board. However, the terrace board must have certain mechanical qualities, which will allow it to be used in fairly harsh conditions - under the action of humidity, UV radiation and under a certain load. This study aimed to determine the main physical and mechanical properties (density, strength at static bending, modulus of elasticity, water absorption, hardness, abrasion resistance, changes in linear dimensions with changing atmospheric environment) samples of terrace board manufacturing from duodenum with different fillers. Samples from a hollow terrace board, which were filled with polyethylene (PE) and polyvinyl chloride (PVC), were used for the study. Based on experimental studies, it was found that the density of both samples is quite high, close to the maximum; the difference is not significant, but when examining microslices under a microscope in samples with PE as a binder, a larger number of voids is observed, indicating the presence of excess moisture or lack of mineral fillers. It may also indicate the destruction of the polymer. It was determined that a number of other important indicators such as strength at static bending, modulus of elasticity, water absorption, abrasion resistance were the best in the samples with a filler of polyvinylchloride. The greatest difference was in the bending strength index and was 35%. It was also found that the hardness of both samples were equivalent. However, the modulus of elasticity of the sample with a filler with PE exceeded the performance of the sample with a filler with PVC by almost 2.5 times. Thus, based on the research, it is possible to identify a number of clear relationships that indicate that theuse of polyvinylchlorideas a binder significantly improves the physical and mechanical properties of the terrace board based on wood-polymer composite. The results of the research will solve the problem of improving the strength characteristics of wood-composite material to expand the range based on wood waste Keywords: density, hardness, modulus of elasticity, water absorption, abrasion resistance.

2021 ◽  
Vol 887 ◽  
pp. 144-150
Author(s):  
A.E. Shkuro ◽  
A.V. Artyomov ◽  
A.V. Savinovskikh

The paper studies issues related to physicochemical and chemical techniques for the modification of wood-polymer composites with a thermoplastic polymer matrix (WPCs) to improve their physical and mechanical properties. The physicochemical modification was performed by photochemical crosslinking with the exposure of WPC specimens to UV irradiation. Chemical modification was performed by introducing benzoyl peroxide into the material composition, leading to chemical crosslinking of polyethylene macromolecules of the WPC polymer matrix. As a result of the study, quantitative characteristics of the effect of the benzoyl peroxide content in the composite, as well as the WPC specimen UV irradiation intensity and duration on the basic physical and mechanical properties of the material have been obtained. The efficiency of physicochemical techniques for modifying WPCs has been estimated by changing the specimen properties such as Brinell hardness, water absorption, and impact strength. It has been found that the Brinell hardness increases by 80 % as compared to unmodified WPC specimens. Effective modification of wood-polymer composites with polymer matrices based on high-density polyethylene may lead to a significant improvement in the quality of products made of these materials.


2019 ◽  
Vol 770 (5) ◽  
pp. 62-66
Author(s):  
A.A. ASKADSKII ◽  
◽  
T.A. MATSEEVICH ◽  
V.I. KONDRASHCHENKO ◽  
◽  
...  

2011 ◽  
Vol 264-265 ◽  
pp. 819-824 ◽  
Author(s):  
Md. Rezaur Rahman ◽  
Sinin Hamdan ◽  
M. Saiful Islam ◽  
Md. Shahjahan Mondol

In Malaysia, especially Borneo Island Sarawak has a large scale of tropical wood species. In this study, selected raw tropical wood species namely Artocarpus Elasticus, Artocarpus Rigidus, Xylopia Spp, Koompassia Malaccensis and Eugenia Spp were chemically treated with sodium meta periodate to convert them into wood polymer composites. Manufactured wood polymer composites were characterized using mechanical testing (modulus of elasticity (MOE), modulus of rupture (MOR), static Young’s modulus) and decay resistance test. Modulus of elasticity and modulus of rupture were calculated using three point bending test. Static Young’s modulus and decay resistance were calculated using compression parallel to gain test and natural laboratory decay test respectively. The manufactured wood polymer composites yielded higher modulus of elasticity, modulus of rupture and static Young’s modulus. Wood polymer composite had high resistant to decay exposure, while Eugenia Spp wood polymer composite had highly resistant compared to the other ones.


2010 ◽  
Vol 70 (1) ◽  
pp. 45-52 ◽  
Author(s):  
I. Połeć ◽  
P.J. Hine ◽  
M.J. Bonner ◽  
I.M. Ward ◽  
D.C. Barton

2018 ◽  
Vol 196 ◽  
pp. 04069
Author(s):  
Andrey Matseevich ◽  
Tatyana Matseevich ◽  
Andrey Askadskii

The abrasion of materials based on blends of ABS plastic with polyvinyl chloride (PVC) as well as terraced boards based on wood-polymer composites (DPC) has been studied. The measurements were carried out on a drum-type machine, and on a Taber's abrasimeter. For blends of ABS plastic with PVC at abrasion path length 600 m wear is 0.85%. For terracotta boards based on WPC, the wear during the test (loss of mass) was 0.0042 g. The abrasion of the sample was 9.29×10-5 g/cm2. Thus, the obtained blends should be recommended for application for floor coverings, since they possess negligible abrasion.


Author(s):  
Tatiana Matseevich ◽  
Tatiana Zhdanova ◽  
Chuang Wang ◽  
Valeriy Kondrashchenko ◽  
Andrey Askadskii

Sign in / Sign up

Export Citation Format

Share Document