irradiation intensity
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 35)

H-INDEX

12
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6999
Author(s):  
Priyabrata Pattanaik ◽  
William Holderbaum ◽  
Asimananda Khandual ◽  
Hara Prasada Tripathy

“Wear a mask. Save lives” is the slogan of WHO and all the government agencies over the world to the public. One of the most adopted prevention measures that can limit the spread of the airborne virus in the form of respiratory viral diseases, including the new strain of COVID-19, is wearing a proper mask. If the mask surface is heated to 65 to 70 °C, it could help potentially diminish any viruses or bacteria accumulated. The FAR-Ultraviolet -C (FAR-UV-C) dose for the influenza limit to 254 nm light is ~3 mJ/cm2/hour exposure is not harmful to the human skin and eyes. Here, we propose an intelligent mask served by FAR-UV-C and conducting a yarn-based heater that could potentially be activated in a controlled manner to kill the virus. The effective irradiation intensity for skin application would be under 0.1 µW/cm2. The exposure risk of UV-C is technically prevented by fabricating multi-layered fabrics with multiple functionalities. Along with experimental validation on bacterial filtration efficiency (BFE), tinker cad simulation for circuit design, and comsol multiphysics for temperature profile study, we probed Moisture Management Test (MMT) in addition with cytotoxicity risk by MTT Assay for survivability to ensure safer application potential. This novel proposed design with the germicidal combination of heating and FAR-UV-C models, described here, is promising in retaliating and combating any airborne viruses.


Author(s):  
Raul Ionel ◽  
Nicu Serban-Pop ◽  
Liliana Matiu-Iovan ◽  
Valentin Ordodi
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Biao Geng ◽  
Zhenwu Shi ◽  
Chen Chen ◽  
Wei Zhang ◽  
Linyun Yang ◽  
...  

AbstractA MBE-prepared Gallium (Ga)-droplet surface on GaAs (001) substrate is in situ irradiated by a single shot of UV pulsed laser. It demonstrates that laser shooting can facilely re-adjust the size of Ga-droplet and a special Ga-droplet of extremely broad size-distribution with width from 16 to 230 nm and height from 1 to 42 nm are successfully obtained. Due to the energetic inhomogeneity across the laser spot, the modification of droplet as a function of irradiation intensity (IRIT) can be straightly investigated on one sample and the correlated mechanisms are clarified. Systematically, the laser resizing can be perceived as: for low irradiation level, laser heating only expands droplets to make mergences among them, so in this stage, the droplet size distribution is solely shifted to the large side; for high irradiation level, laser irradiation not only causes thermal expansion but also thermal evaporation of Ga atom which makes the size-shift move to both sides. All of these size-shifts on Ga-droplets can be strongly controlled by applying different laser IRIT that enables a more designable droplet epitaxy in the future.


2021 ◽  
Vol 14 (7) ◽  
pp. 998-1005
Author(s):  
Bo-Wen Ouyang ◽  
◽  
Han Wang ◽  
Zhen-Duo Yang ◽  
Tan Zhong ◽  
...  

AIM: To evaluate the differences in corneal biological parameters between transepithelial and epithelium-off corneal cross-linking in keratoconus. METHODS: In our prospective clinical trial, 40 patients (60 eyes) with progressive keratoconus were randomized to undergo corneal cross-linking with transepithelial (TE group, n=30) or epithelium-off (EO group, n=30) keratoconus. Examinations comprised topography, corneal biomechanical analysis and specular microscopy at 6mo postoperatively. RESULTS: The keratometer values were not significantly different between the TE and EO corneal cross-linked groups in different periods (each P>0.05). The corneal thickness of the EO group was greater than that of the TE group at 1wk after the operation (each P<0.05). Regarding corneal biomechanical responses, the EO group showed a longer second applanation length than TE group (P=0.003). Regarding the corneal endothelial function, standard deviation of the endothelial cell size, and coefficient of variation in the cell area, the values of EO group were larger than those of TE group at 1wk (P=0.011, 0.026), and the percentage of hexagonal cells in EO group was lower than that in TE group at 1 and 6mo (P=0.018, 0.019). CONCLUSION: Epithelium-off corneal cross-linking may strengthen corneal biomechanics better than TE procedure can. However, the TE procedure with a lower ultraviolet-A irradiation intensity would be safer for corneal endothelial function.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1282
Author(s):  
Zlata V. Ogneva ◽  
Vlada V. Volkonskaia ◽  
Alexandra S. Dubrovina ◽  
Andrey R. Suprun ◽  
Olga A. Aleynova ◽  
...  

Excessive ultraviolet B (UV-B) irradiation is one of the most serious threats leading to severe crop production losses. It is known that secondary metabolite biosynthesis plays an important role in plant defense and forms a protective shield against excessive UV-B irradiation. The contents of stilbenes and other plant phenolics are known to sharply increase after UV-B irradiation, but there is little direct evidence for the involvement of stilbenes and other plant phenolics in plant UV-B protection. This study showed that foliar application of trans-resveratrol (1 and 5 mM) and trans-piceid (5 mM) considerably increased tolerance to a shock of UV-B (10 min at 1800 µW cm−2 of irradiation intensity) of four-week-old Arabidopsis thaliana plants that are naturally incapable of stilbene production. Application of trans-resveratrol and trans-piceid increased the leaf survival rates by 1–2%. This stilbene-induced improvement in UV-B tolerance was higher than after foliar application of the stilbene precursors, p-coumaric and trans-cinnamic acids (only 1–3%), but less than that after treatment with octocrylene (19–24%), a widely used UV-B absorber. Plant treatment with trans-resveratrol increased expression of antioxidant and stress-inducible genes in A.thaliana plants and decreased expression of DNA repair genes. This study directly demonstrates an important positive role of stilbenes in plant tolerance to excessive UV-B irradiation, and offers a new approach for plant UV-B protection.


2021 ◽  
Vol 887 ◽  
pp. 144-150
Author(s):  
A.E. Shkuro ◽  
A.V. Artyomov ◽  
A.V. Savinovskikh

The paper studies issues related to physicochemical and chemical techniques for the modification of wood-polymer composites with a thermoplastic polymer matrix (WPCs) to improve their physical and mechanical properties. The physicochemical modification was performed by photochemical crosslinking with the exposure of WPC specimens to UV irradiation. Chemical modification was performed by introducing benzoyl peroxide into the material composition, leading to chemical crosslinking of polyethylene macromolecules of the WPC polymer matrix. As a result of the study, quantitative characteristics of the effect of the benzoyl peroxide content in the composite, as well as the WPC specimen UV irradiation intensity and duration on the basic physical and mechanical properties of the material have been obtained. The efficiency of physicochemical techniques for modifying WPCs has been estimated by changing the specimen properties such as Brinell hardness, water absorption, and impact strength. It has been found that the Brinell hardness increases by 80 % as compared to unmodified WPC specimens. Effective modification of wood-polymer composites with polymer matrices based on high-density polyethylene may lead to a significant improvement in the quality of products made of these materials.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2315
Author(s):  
Nicola Trivellin ◽  
Matteo Buffolo ◽  
Francesco Onelia ◽  
Alberto Pizzolato ◽  
Marco Barbato ◽  
...  

We report on the design, characterization and validation of a spherical irradiation system for inactivating SARS-CoV-2, based on UV-C 275 nm LEDs. The system is designed to maximize irradiation intensity and uniformity and can be used for irradiating a volume of 18 L. To this aim: (i) several commercially available LEDs have been acquired and analyzed; (ii) a complete optical study has been carried out in order to optimize the efficacy of the system; (iii) the resulting prototype has been characterized optically and tested for the inactivation of SARS-CoV-2 for different exposure times, doses and surface types; (iv) the result achieved and the efficacy of the prototype have been compared with similar devices based on different technologies. Results indicate that a 99.9% inactivation can be reached after 1 min of treatment with a dose of 83.1 J/m2.


Sign in / Sign up

Export Citation Format

Share Document