scholarly journals Modified Newton's Methods with Seventh or Eighth -Order Convergence

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Husnia Eldanfour
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Rajni Sharma ◽  
Janak Raj Sharma

We derive a family of eighth-order multipoint methods for the solution of nonlinear equations. In terms of computational cost, the family requires evaluations of only three functions and one first derivative per iteration. This implies that the efficiency index of the present methods is 1.682. Kung and Traub (1974) conjectured that multipoint iteration methods without memory based on n evaluations have optimal order . Thus, the family agrees with Kung-Traub conjecture for the case . Computational results demonstrate that the developed methods are efficient and robust as compared with many well-known methods.


2011 ◽  
Vol 235 (10) ◽  
pp. 3189-3194 ◽  
Author(s):  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 837
Author(s):  
R. A. Alharbey ◽  
Munish Kansal ◽  
Ramandeep Behl ◽  
J. A. Tenreiro Machado

This article proposes a wide general class of optimal eighth-order techniques for approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight function with an approach involving the function-to-function ratio. An extensive convergence analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the existing techniques are special cases of the new scheme. The algorithms are tested in several real-life problems to check their accuracy and applicability. The results of the dynamical study confirm that the new methods are more stable and accurate than the existing schemes.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mohammed Barrada ◽  
Mariya Ouaissa ◽  
Yassine Rhazali ◽  
Mariyam Ouaissa

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.


Sign in / Sign up

Export Citation Format

Share Document