scholarly journals Experimental Study on the Effect of Nano Additives γAl2O3 and Equivalence Ratio to Bunsen Flame Characteristic of Biodiesel from Nyamplung (Calophyllum Inophyllum)

2021 ◽  
Vol 4 (2) ◽  
pp. 51-61
Author(s):  
Setyo Pambudi ◽  
Nasrul Ilminnafik ◽  
Salahuddin Junus ◽  
Muh Nurkoyim Kustanto

Nano γAl2O3 has been one of the nanometal oxides that has improved the characteristics of biodiesel. The effect of γAl2O3 nanoparticles addition on premixed flame combustion is investigated with an experiment on the laminar flame speed of Calophyllum inophyllum methyl ester 30% and 70% petrodiesel mixtures, at atmospheric pressure and preheated temperature T = 473K. The γAl2O3 nanoparticles added to CIME30 biodiesel were 0ppm, 100ppm, 200ppm, and 300ppm. Experiments were carried out on a bunsen burner. The equivalent ratio of the mixture between ϕ = 0.67 to 1.17. Experiments revealed that the addition of nanoparticles to CIME30 biodiesel expands the flammability limit and increases the laminar flame speed. CIME30 without nanoparticles, flame stable between ϕ = 0,76 -1,17. CIME30 with nanoparticles, flame stable between ϕ = 0,67 -1,17. Combustion of CIME30 required a lot of air. The highest laminar flame speed occurred at the equivalent ratio ϕ = 0.83. The highest laminar flame speed of CIME30 0, 100, 200, and 300 ppm were 30.77, 34.50, 35.90, 38.45 cm/s respectively. The higher the nano γAl2O3 concentration the higher the laminar flame speed. This occurs due to the catalytic effect of γAl2O3 on biodiesel and its mixtures.

Author(s):  
Daniel Pugh ◽  
Philip Bowen ◽  
Andrew Crayford ◽  
Richard Marsh ◽  
Jon Runyon ◽  
...  

It has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous BOF (Basic Oxygen Furnace) or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is non-monotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blowoff, and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modelling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modelled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in lean blow off stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames, are compared against the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of piratical systems.


Author(s):  
Daniel Pugh ◽  
Philip Bowen ◽  
Andrew Crayford ◽  
Richard Marsh ◽  
Jon Runyon ◽  
...  

It has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous basic oxygen furnace or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is nonmonotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blow-off (LBO), and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modeling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modeled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser-induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in LBO stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames are appraised within the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of practical systems.


Author(s):  
Nasser Shelil ◽  
Anthony Griffiths ◽  
Audrius Bagdanavicius ◽  
Nick Syred

CFD modeling is used to simulate the combustion and flashback behavior of H2/CH4 fuel blends with air in a premixed swirl burner using a three dimensional–finite volume model. Preliminary work was performed to calculate the laminar flame speed for H2/CH4 blends from pure methane up to pure hydrogen at various pressures, temperatures and equivalence ratios by using CHEMKIN, for pure fuels, and a new approximation based on the gravimetric mixture ratio, for the fuel blends. Then, the numerical values for laminar flame speed were fed to a FLUENT CFD model to create a PDF table for turbulent premixed combustion calculations and flashback studies. Flashback limits were defined and determined for H2/CH4 blends ranging from 0% (pure methane) up to 100% (pure hydrogen) based on the volumetric composition at atmospheric pressure and 300K for various equivalence ratios. The simulations were compared with experimental measurements at atmospheric pressure for two fuel blends with γ of 0.15 and 0.3 and showed best fit for equivalence ratios less than 0.75 to 0.8. The work was then extended to include simulation studies to investigate the effect of operating pressure and raw gases temperature on flame stability and showed a high dependence on both operating pressure and raw gases temperature.


Author(s):  
Prabhakar Venkateswaran ◽  
Andrew D. Marshall ◽  
David R. Noble ◽  
Jose Antezana ◽  
Jerry M. Seitzman ◽  
...  

This paper describes measurements of the global turbulent consumption speed, ST,GC, of atmospheric pressure H2/CO flames at mean flow velocities and turbulence intensities up to U = 50 m/s and u′/SL = 100, respectively. The particular emphasis of the paper is to characterize H2/CO mixture properties upon turbulent flame speeds — a number of prior studies have noted that different fuels, with the same laminar flame speed and combusted in the same turbulent flow, can have widely different turbulent flame speeds. This effect is believed to be due to flame speed sensitivities to stretch and possibly thermo-diffusive instabilities. While this effect is widely known, little data are available for syngas blends. Turbulent flame speeds were obtained with blends ranging from 30–90% H2, with the mixture equivalence ratio, φ, adjusted at each fuel composition to have nominally the same laminar flame speed, SL. In addition, equivalence ratio sweeps at constant H2 level were also performed. The data clearly corroborate results from other studies that show significant sensitivity of ST,GC to fuel composition. In particular, at a fixed u′ and SL, values of ST,GC increase by almost a factor of 1.5–2 when H2 levels are increased from 30% (at φ = 0.59) to 90% (at φ = 0.46). Moreover, ST,GC in the 90% H2 case is 3 times larger than the φ = 0.9 CH4/air mixture with the same SL value. An important conclusion from this work is that fuel effects on ST,GC highlighted above are not simply a low turbulence intensity phenomenon — they clearly persist over the entire range of turbulence intensities used in the measurements.


Author(s):  
Pablo Diaz Gomez Maqueo ◽  
Philippe Versailles ◽  
Gilles Bourque ◽  
Jeffrey M. Bergthorson

This study investigates the increase in methane and biogas flame reactivity enabled by the addition of syngas produced through fuel reforming. To isolate thermodynamic and chemical effects on the reactivity of the mixture, the burner simulations are performed with a constant adiabatic flame temperature of 1800 K. Compositions and temperatures are calculated with the chemical equilibrium solver of CANTERA® and the reactivity of the mixture is quantified using the adiabatic, freely-propagating premixed flame, and perfectly-stirred reactors of the CHEMKIN-Pro® software package. The results show that the produced syngas has a content of up to 30 % H2 with a temperature up to 950 K. When added to the fuel, it increases the laminar flame speed while maintaining a burning temperature of 1800 K. Even when cooled to 300 K, the laminar flame speed increases up to 30 % from the baseline of pure biogas. Hence, a system can be developed that controls and improves biogas flame stability under low reactivity conditions by varying the fraction of added syngas to the mixture. This motivates future experimental work on reforming technologies coupled with gas turbine exhausts to validate this numerical work.


Fuel ◽  
2013 ◽  
Vol 113 ◽  
pp. 586-597 ◽  
Author(s):  
J.D. Munzar ◽  
B. Akih-Kumgeh ◽  
B.M. Denman ◽  
A. Zia ◽  
J.M. Bergthorson

Fuel ◽  
2011 ◽  
Vol 90 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jaap de Vries ◽  
William B. Lowry ◽  
Zeynep Serinyel ◽  
Henry J. Curran ◽  
Eric L. Petersen

2017 ◽  
Vol 18 (9) ◽  
pp. 951-970 ◽  
Author(s):  
Riccardo Amirante ◽  
Elia Distaso ◽  
Paolo Tamburrano ◽  
Rolf D Reitz

The laminar flame speed plays an important role in spark-ignition engines, as well as in many other combustion applications, such as in designing burners and predicting explosions. For this reason, it has been object of extensive research. Analytical correlations that allow it to be calculated have been developed and are used in engine simulations. They are usually preferred to detailed chemical kinetic models for saving computational time. Therefore, an accurate as possible formulation for such expressions is needed for successful simulations. However, many previous empirical correlations have been based on a limited set of experimental measurements, which have been often carried out over a limited range of operating conditions. Thus, it can result in low accuracy and usability. In this study, measurements of laminar flame speeds obtained by several workers are collected, compared and critically analyzed with the aim to develop more accurate empirical correlations for laminar flame speeds as a function of equivalence ratio and unburned mixture temperature and pressure over a wide range of operating conditions, namely [Formula: see text], [Formula: see text] and [Formula: see text]. The purpose is to provide simple and workable expressions for modeling the laminar flame speed of practical fuels used in spark-ignition engines. Pure compounds, such as methane and propane and binary mixtures of methane/ethane and methane/propane, as well as more complex fuels including natural gas and gasoline, are considered. A comparison with available empirical correlations in the literature is also provided.


2016 ◽  
Vol 30 (10) ◽  
pp. 8737-8745 ◽  
Author(s):  
Carlos A. Gomez Casanova ◽  
Edwin Othen ◽  
John L. Sorensen ◽  
David B. Levin ◽  
Madjid Birouk

Sign in / Sign up

Export Citation Format

Share Document