pure methane
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 144
Author(s):  
Aleksandr S. Tanichev ◽  
Dmitry V. Petrov

In this work, the effect of nitrogen and carbon dioxide on the depolarization ratio of the ν1 band of methane in the pressure range of 0.1–5 MPa is studied. A high-sensitivity single-pass Raman spectrometer was used to obtain accurate results. Moreover, we took into account the overlap of the ν1 band by the ν3 and ν2 + ν4 bands using the simulation of their spectra. The depolarization ratio of the ν1 band in pure methane is within 0–0.001, and the effect of nitrogen and carbon dioxide on this parameter is negligible in the indicated pressure range. The obtained results are useful for correct simulation of the Raman spectrum of methane at different pressures, which is necessary to improve the accuracy of gas analysis methods using Raman spectroscopy.


2021 ◽  
Author(s):  
Hilario Martin Rodriguez ◽  
Yalda Barzin ◽  
Gregory James Walker ◽  
Markus Gruenwalder ◽  
Matias Fernandez-Badessich ◽  
...  

Abstract This study has double objectives: investigation of the main recovery mechanisms affecting the performance of the gas huff-n-puff (GHnP) process in a shale oil reservoir, and application of optimization techniques to modelling of the cyclic gas injection. A dual-permeability reservoir simulation model has been built to reproduce the performance of a single hydraulic fracture. The hydraulic fracture has the average geometry and properties of the well under analysis. A history match workflow has been run to obtain a simulation model fully representative of the studied well. An optimization workflow has been run to maximize the cumulative oil obtained during the GHnP process. The operational variables optimized are: duration of gas injection, soaking, and production, onset time of GHnP, injection gas flow rate, and number of cycles. This optimization workflow is launched twice using two different compositions for the injection gas: rich gas and pure methane. Additionally, the optimum case obtained previously with rich gas is simulated with a higher minimum bottom hole pressure (BHP) for both primary production and GHnP process. Moreover, some properties that could potentially explain the different recovery mechanisms were tracked and analyzed. Three different porosity systems have been considered in the model: fractures, matrix in the stimulated reservoir volume (SRV), and matrix in the non-SRV zone (virgin matrix). Each one with a different pressure profile, and thus with its corresponding recovery mechanisms, identified as below: Vaporization/Condensation (two-phase system) in the fractures.Miscibility (liquid single-phase) in the non-SRV matrix.Miscibility and/or Vaporization/Condensation in the SRV matrix: depending on the injection gas composition and the pressure profile along the SRV the mechanism may be clearly one of them or even both. Results of this simulation study suggest that for the optimized cases, incremental oil recovery is 24% when the gas injected is a rich gas, but it is only 2.4% when the gas injected is pure methane. A higher incremental oil recovery of 49% is obtained, when injecting rich gas and increasing the minimum BHP of the puff cycle above the saturation pressure. Injection of gas results in reduction of oil molecular weight, oil density and oil viscosity in the matrix, i.e., the oil gets lighter. This net decrease is more pronounced in the SRV than in the non-SRV region. The incremental oil recovery observed in the GHnP process is due to the mobilization of heavy components (not present in the injection gas composition) that otherwise would remain inside the reservoir. Due to the main characteristic of the shale reservoirs (nano-Darcy permeability), GHnP is not a displacement process. A key factor in success of the GHnP process is to improve the contact of the injected gas and the reservoir oil to increase the mixing and mass transfer. This study includes a review of different mechanisms, and specifically tracks the evolution of the properties that explain and justify the different identified mechanisms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hao Liang ◽  
Yonggang Duan ◽  
Jun Pei ◽  
Na Wei

Natural gas hydrate is a potential energy source in the future, which widely occurs in nature and industrial activities, and its formation and decomposition are identified by phase equilibrium. The calculation of multicomponent gas phase equilibrium is more complex than that of single component gas, which depends on the accurate model characterized by enthalpy and free energy. Based on the Kvamme-Tanaka statistical thermodynamic model, theoretical and experimental methods were used to predict and verify the phase equilibrium of pure methane hydrate and carbon dioxide hydrate in the temperature range of 273.17–289.05 K. The phase equilibrium curves of methane-containing gases such as CH4+CO2,CH4+C2H6,CH4+H2S and CH4+CO2+H2S under different mole fractions were drawn and analyzed, and the decomposition or formation enthalpy and free energy of hydrate were calculated. The results show that, the phase equilibrium curves of the methane containing systems is mainly related to the guest molecule type and the composition of gas. The evolution law of phase equilibrium pressure of different gases varies with composition and temperature, and the phase splitting of CO2 at the quadruple point affects the phase equilibrium conditions. Due to the consideration of the interaction between the motion of guest molecules and the vibration of crystal lattice, the model exhibits a good performance, which is quantified in terms of mean square error (MSE) with respect to the experimental data. The magnitudes of MSE percent are respectively 1.2, 4.8, 15.12 and 9.20 MPa2 for CH4+CO2, CH4+C2H6, CH4+H2S and CH4+CO2+H2S systems, and the values are as low as 3.57 and 1.32 MPa2 for pure methane and carbon dioxide, respectively. This study provides engineers and researchers who want to consult the diagrams at any time with some new and accurate experimental data, calculated results and phase equilibrium curves. The research results are of great significance to the development and utilization of gas hydrate and the flow safety prediction of gas gathering and transportation.


Author(s):  
Sandeep Jella ◽  
Gilles Bourque ◽  
Pierre Gauthier ◽  
Philippe Versailles ◽  
Jeffrey M. Bergthorson ◽  
...  

Abstract The minimization of autoignition risk is critical to premixer design. Safety factors based on ignition delays of homogeneous mixtures, are generally used to guide the choice of a residence time for a given premixer. However, autoignition chemistry at aeroderivative conditions is fast (0.5-2 milliseconds) and can be initiated within typical premixer residence times. The analysis of what takes place in this short period involves the study of low-temperature precursor chemistry. By coupling the evolution of the Chemical Explosive Modes to turbulence, it is possible to obtain a measure of spatial autoignition risk where both chemical (e.g. ignition delay) and aerodynamic (e.g. local residence time) influences are unified. In this article, we describe a method that couples Large Eddy Simulation to newly developed, reduced autoignition chemical kinetics to study autoignition precursors in an example premixer representative of real life geometric complexity. A blend of pure methane and dimethyl ether (DME), a common fuel used for experimental autoignition studies, was transported using the reduced mechanism (38 species / 238 reactions) at engine conditions at increasing levels of DME concentration until exothermic autoignition kernels were formed. The Chemical Explosive Mode analysis closely follows the large thermochemical changes in the premixer as a function of DME concentration and identifies where the premixer is sensitive and flame anchoring is likely to occur.


Author(s):  
Liangyuan Wei ◽  
Hamza Azad ◽  
Wim Haije ◽  
Henrik Grenman ◽  
Wiebren de Jong

Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Hydrogen combustion is well-known to lead to combustion instabilities. The high temperatures and reaction rates can potentially lead to flashback. In the past, combustion air humidification has proven effective to reduce temperatures and reaction rates. Therefore, humidification can open a path to stabilize hydrogen combustion. However, accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. This paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations analysis. In a first step, the necessary minimal water dilution, to reach stable combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched cases. The results of this comparison show that the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, high fidelity LES on the 3D geometry are performed to show that water dilution helped to lower the temperature and reaction rate of hydrogen at same levels as reference case, and thus prevents flashback, enabling the use of hydrogen blends in the mGT.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Faraz Rajput ◽  
Milan Maric ◽  
Phillip Servio

Macrosurfactants consisting of water-soluble poly(vinylcaprolactam) (PVCap) or poly(vinylpyrrolidone) (PVP) segments with comparatively shorter hydrophobic poly(styrene) (PS) or poly(2,3,4,5,6-pentafluorostyrene) (PPFS) segments were used as kinetic hydrate inhibitors (KHIs). These were synthesized with 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent at 60 °C or 90 °C for 1-P(S/PFS) or 1-PVCap, respectively, followed by chain extension at 90 °C or 70 °C with PVCap or PVP, respectively. The addition of PVCap to the pure methane-water system resulted in a 53% reduction of methane consumption (comparable to PVP with 51% inhibition) during the initial growth phase. A PS-PVCap block copolymer comprised of 10 mol% PS and 90 mol% PVCap improved inhibition to 56% compared to the pure methane-water system with no KHIs. Substituting PS with a more hydrophobic PPFS segment further improved inhibition to 73%. By increasing the ratio of the hydrophobic PS- to PVCap- groups in the polymer, an increase of its inhibition potential was measured. For PPFS-PVCap, an increase of PPFS ratio from 5% to 10% decreased the methane formation rate by 6%. However, PPFS-PVCap block copolymers with more than 20 mol% PPFS were unable to dissolve in water due to increase in hydrophobicity and the attendant low critical micelle concentration (CMC).


2020 ◽  
Vol 26 (5) ◽  
pp. 200311-0
Author(s):  
Chiu-Shia Fen ◽  
Yu-Ro Lin ◽  
Chia-Yu Chen

This study explored two diffusion approaches, Fick’s law and the dusty gas model (DGM), to assess their differences on modeling methane transport in porous systems. Laboratory experiments were also conducted for methane transport through a nitrogen gas-dry soil column from different source densities. Gas pressures and methane densities at transient state were measured along the column for two transport configurations (horizontal and vertically upward) and compared with the predictions obtained from the DGM- and Fickian-based models. The retardation factor is the only parameter used in the model calibration. The results showed that the methane density profiles predicted by these models fairly matched the measured data and are quite consistent for vertically upward transport of methane. However, the predictions were over the measured ones for horizontal transport of methane. We suspected it is due to incomplete mixing of gas mixture in the inlet chamber since high pressure variations were observed in the horizontal transport experiments. Further, we found that the methane density profile predicted by the Fickian-based model is lagged behind the DGM result for at most 15% of difference in methane density for horizontal transport of methane from a pure methane source.horizontal transport experiments. Further, we found that the methane density profile predicted by the Fickian-based model lagged behind the DGM result for at most 15% of difference in methane density for horizontal transport of methane from a pure methane source.


Sign in / Sign up

Export Citation Format

Share Document