scholarly journals Utilization of Spinal Navigation to Facilitate Hassle-Free Rod Placement during Minimally-Invasive Long-Construct Posterior Instrumentation

2019 ◽  
Vol 13 (3) ◽  
pp. 511-514
Author(s):  
Arun-Kumar Kaliya-Perumal ◽  
Worawat Limthongkul ◽  
Jacob Yoong-Leong Oh
2012 ◽  
Vol 16 (3) ◽  
pp. 264-279 ◽  
Author(s):  
Juan S. Uribe ◽  
William D. Smith ◽  
Luiz Pimenta ◽  
Roger Härtl ◽  
Elias Dakwar ◽  
...  

Object Symptomatic herniated thoracic discs remain a surgical challenge and historically have been associated with significant complications. While neurological outcomes have improved with the abandonment of decompressive laminectomy, the attempt to minimize surgical complications and associated morbidities continues through less invasive approaches. Many of these techniques, such as thoracoscopy, have not been widely adopted due to technical difficulties. The current study was performed to examine the safety and early results of a minimally invasive lateral approach for symptomatic thoracic herniated intervertebral discs. Methods Sixty patients from 5 institutions were treated using a mini-open lateral approach for 75 symptomatic thoracic herniated discs with or without calcification. The mean age was 57.9 years (range 23–80 years), and 53.3% of the patients were male. Treatment levels ranged from T4–5 to T11–12, with 1–3 levels being treated (mean 1.3 levels). The most common levels treated were T11–12 (14 cases [18.7%]), T7–8 (12 cases [16%]), and T8–9 (12 cases [16%]). Symptoms included myelopathy in 70% of cases, radiculopathy in 51.7%, axial back pain in 76.7%, and bladder and/or bowel dysfunction in 26.7%. Instrumentation included an interbody spacer in all but 6 cases (10%). Supplemental internal fixation included anterolateral plating in 33.3% of cases and pedicle screws in 10%; there was no supplemental internal fixation in 56.7% of cases. Follow-up ranged from 0.5 to 24 months (mean 11.0 months). Results The median operating time, estimated blood loss, and length of stay were 182 minutes, 290 ml, and 5.0 days, respectively. Four major complications occurred (6.7%): pneumonia in 1 patient (1.7%); extrapleural free air in 1 patient (1.7%), treated with chest tube placement; new lower-extremity weakness in 1 patient (1.7%); and wound infection in posterior instrumentation in 1 patient (1.7%). Reoperations occurred in 3 cases (5%): one for posterior reexploration, one for infection in posterior instrumentation, and one for removal of symptomatic residual disc material. Back pain, measured using the visual analog scale, improved 60% from the preoperative score to the last follow-up, that is, from 7.8 to 3.1. Excellent or good overall outcomes were achieved in 80% of the patients, a fair or unchanged outcome resulted in 15%, and a poor outcome occurred in 5%. Moreover, myelopathy, radiculopathy, axial back pain, and bladder and/or bowel dysfunction improved in 83.3%, 87.0%, 91.1%, and 87.5% of cases, respectively. Conclusions The authors' early experience with a large multicenter series suggested that the minimally invasive lateral approach is a safe, reproducible, and efficacious procedure for achieving adequate decompression in thoracic disc herniations in a less invasive manner than conventional surgical techniques and without the use of endoscopes. Symptom resolution was achieved at similar rates using this approach as compared with the most efficacious techniques in the literature, and with fewer complications in most circumstances.


2019 ◽  
Vol 30 (6) ◽  
pp. 833-838 ◽  
Author(s):  
Paul Park ◽  
Kai-Ming Fu ◽  
Robert K. Eastlack ◽  
Stacie Tran ◽  
Gregory M. Mundis ◽  
...  

OBJECTIVEIt is now well accepted that spinopelvic parameters are correlated with clinical outcomes in adult spinal deformity (ASD). The purpose of this study was to determine whether obtaining optimal spinopelvic alignment was absolutely necessary to achieve a minimum clinically important difference (MCID) or substantial clinical benefit (SCB).METHODSA multicenter retrospective review of patients who underwent less-invasive surgery for ASD was conducted. Inclusion criteria were age ≥ 18 years and one of the following: coronal Cobb angle > 20°, sagittal vertical axis (SVA) > 5 cm, pelvic tilt (PT) > 20°, or pelvic incidence to lumbar lordosis (PI-LL) mismatch > 10°. A total of 223 patients who were treated with circumferential minimally invasive surgery or hybrid surgery and had a minimum 2-year follow-up were identified. Based on optimal spinopelvic parameters (PI-LL mismatch ± 10° and SVA < 5 cm), patients were divided into aligned (AL) or malaligned (MAL) groups. The primary clinical outcome studied was the Oswestry Disability Index (ODI) score.RESULTSThere were 74 patients in the AL group and 149 patients in the MAL group. Age and body mass index were similar between groups. Although the baseline SVA was similar, PI-LL mismatch (9.9° vs 17.7°, p = 0.002) and PT (19° vs 24.7°, p = 0.001) significantly differed between AL and MAL groups, respectively. As expected postoperatively, the AL and MAL groups differed significantly in PI-LL mismatch (−0.9° vs 13.1°, p < 0.001), PT (14° vs 25.5°, p = 0.001), and SVA (11.8 mm vs 48.3 mm, p < 0.001), respectively. Notably, there was no difference in the proportion of AL or MAL patients in whom an MCID (52.75% vs 61.1%, p > 0.05) or SCB (40.5% vs 46.3%, p > 0.05) was achieved for ODI score, respectively. Similarly, no differences in percentage of patients obtaining an MCID or SCB for visual analog scale back and leg pain score were observed. On multivariate analysis controlling for surgical and preoperative demographic differences, achieving optimal spinopelvic parameters was not associated with achieving an MCID (OR 0.645, 95% CI 0.31–1.33) or an SCB (OR 0.644, 95% CI 0.31–1.35) for ODI score.CONCLUSIONSAchieving optimal spinopelvic parameters was not a predictor for achieving an MCID or SCB. Since spinopelvic parameters are correlated with clinical outcomes, the authors’ findings suggest that the presently accepted optimal spinopelvic parameters may require modification. Other factors, such as improvement in neurological symptoms and/or segmental instability, also likely impacted the clinical outcomes.


2018 ◽  
Vol 9 (5) ◽  
pp. 512-520 ◽  
Author(s):  
Daipayan Guha ◽  
Raphael Jakubovic ◽  
Shaurya Gupta ◽  
Michael G. Fehlings ◽  
Todd G. Mainprize ◽  
...  

Study Design: Prospective pre-clinical and clinical cohort study. Objectives: Current spinal navigation systems rely on a dynamic reference frame (DRF) for image-to-patient registration and tool tracking. Working distant to a DRF may generate inaccuracy. Here we quantitate predictors of navigation error as a function of distance from the registered vertebral level, and from intersegmental mobility due to surgical manipulation and patient respiration. Methods: Navigation errors from working distant to the registered level, and from surgical manipulation, were quantified in 4 human cadavers. The 3-dimensional (3D) position of a tracked tool tip at 0 to 5 levels from the DRF, and during targeting of pedicle screw tracts, was captured in real-time by an optical navigation system. Respiration-induced vertebral motion was quantified from 10 clinical cases of open posterior instrumentation. The 3D position of a custom spinous-process clamp was tracked over 12 respiratory cycles. Results: An increase in mean 3D navigation error of ≥2 mm was observed at ≥2 levels from the DRF in the cervical and lumbar spine. Mean ± SD displacement due to surgical manipulation was 1.55 ± 1.13 mm in 3D across all levels, ≥2 mm in 17.4%, 19.2%, and 38.5% of levels in the cervical, thoracic, and lumbar spine, respectively. Mean ± SD respiration-induced 3D motion was 1.96 ± 1.32 mm, greatest in the lower thoracic spine ( P < .001). Tidal volume and positive end-expiratory pressure correlated positively with increased vertebral displacement. Conclusions: Vertebral motion is unaccounted for during image-guided surgery when performed at levels distant from the DRF. Navigating instrumentation within 2 levels of the DRF likely minimizes the risk of navigation error.


2021 ◽  
Author(s):  
Alberto Balestrino ◽  
Renato Gondar ◽  
Gianpaolo Jannelli ◽  
Gianluigi Zona ◽  
Enrico Tessitore

Abstract Objectives: The cervicothoracic junction (CTJ) is a region of the spine submitted to significant mechanical stress. The peculiar anatomical and biomechanical characteristics make posterior surgical stabilization of this area particularly challenging. We present and discuss our surgical series highlighting the specific surgical challenges provided by this region of the spine.Methods: We have analyzed and reported retrospective data from patients who underwent a posterior cervicothoracic instrumentation between 2011 and 2019 at the Neurosurgical Department of the Geneva University Hospitals. We have discussed C7 and Th1 instrumentation techniques, rods design, extension of constructs and spinal navigation.Results: 36 patients were enrolled. We have preferentially used lateral mass (LM) screws in the subaxial spine, pedicle screws (PS) in C7, Th1 and upper thoracic spine. We have found no superiority of 3D navigation techniques over 2D fluoroscopy guidance in PS placement accuracy, probably due to the relatively small case series. Surgical site infection was the most frequent complication, significantly associated with tumor as diagnosis.Conclusions: When technically feasible, PS represent the technique of choice for C7 and Th1 instrumentation although other safe techniques are available. Different rods constructs are described although significant differences in biomechanical stability still need to be clarified. Spinal navigation should be used whenever available even though 2D fluoroscopy is still a safe option. Posterior instrumentation of the CTJ is a challenging procedure but with correct surgical planning and technique it is safe and effective.


Sign in / Sign up

Export Citation Format

Share Document