scholarly journals Target Object Tracking in Image Sequences Based on 3-D Multivalued Watershed Algorithm

Author(s):  
Tadashi Hamasaki ◽  
Toshiyuki Yoshida
Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 48 ◽  
Author(s):  
Dae Bae ◽  
Jae Kim ◽  
Jae-Pil Heo

Object tracking is a fundamental problem in computer vision since it is required in many practical applications including video-based surveillance and autonomous vehicles. One of the most challenging scenarios in the problem is when the target object is partially or even fully occluded by other objects. In such cases, most of existing trackers can fail in their task while the object is invisible. Recently, a few techniques have been proposed to tackle the occlusion problem by performing the tracking on plenoptic image sequences. Although they have shown promising results based on the refocusing capability of plenoptic images, there is still room for improvement. In this paper, we propose a novel focus index selection algorithm to identify an optimal focal plane where the tracking should be performed. To determine an optimal focus index, we use a focus measure to find maximally focused plane and a visual similarity to capture the plane where the target object is visible, and its appearance is distinguishably clear. We further use the selected focus index to generate proposals. Since the optimal focus index allows us to estimate the distance between the camera and the target object, we can more accurately guess the scale changes of the object in the image plane. Our proposal algorithm also takes the trajectory of the target object into account. We extensively evaluate our proposed techniques on three plenoptic image sequences by comparing them against the prior tracking methods specialized to the plenoptic image sequences. In experiments, our method provides higher accuracy and robustness over the prior art, and those results confirm that the merits of our proposed algorithms.


Author(s):  
Indah Agustien Siradjuddin ◽  
◽  
Muhammad Rahmat Widyanto ◽  

To track vehicle motion in data video, particle filter with Gaussian weighting is proposed. This method consists of four main stages. First, particles are generated to predict target’s location. Second, certain particles are searched and these particles are used to build Gaussian distribution. Third, weight of all particles is calculated based on Gaussian distribution. Fourth, particles are updated based on each weight. The proposed method could reduce computational time of tracking compared to that of conventional method of particle filter, since the proposed method does not have to calculate all particles weight using likelihood function. This method has been tested on video data with car as a target object. In average, this proposed method of particle filter is 60.61% times faster than particle filter method meanwhile the accuracy of tracking with this newmethod is comparable with particle filter method, which reach up to 86.87%. Hence this method is promising for real time object tracking application.


2021 ◽  
Author(s):  
Kosuke Honda ◽  
Hamido Fujita

In recent years, template-based methods such as Siamese network trackers and Correlation Filter (CF) based trackers have achieved state-of-the-art performance in several benchmarks. Recent Siamese network trackers use deep features extracted from convolutional neural networks to locate the target. However, the tracking performance of these trackers decreases when there are similar distractors to the object and the target object is deformed. On the other hand, correlation filter (CF)-based trackers that use handcrafted features (e.g., HOG features) to spatially locate the target. These two approaches have complementary characteristics due to differences in learning methods, features used, and the size of search regions. Also, we found that these trackers are complementary in terms of performance in benchmarking. Therefore, we propose the “Complementary Tracking framework using Average peak-to-correlation energy” (CTA). CTA is the generic object tracking framework that connects CF-trackers and Siamese-trackers in parallel and exploits the complementary features of these. In CTA, when a tracking failure of the Siamese tracker is detected using Average peak-to-correlation energy (APCE), which is an evaluation index of the response map matrix, the CF-trackers correct the output. In experimental on OTB100, CTA significantly improves the performance over the original tracker for several combinations of Siamese-trackers and CF-rackers.


1999 ◽  
Vol 116 (6) ◽  
pp. 390-394
Author(s):  
R. Hoischen ◽  
B. Mertsching ◽  
S. Springmann

2011 ◽  
Vol 341-342 ◽  
pp. 790-797 ◽  
Author(s):  
Zhi Yan Xiang ◽  
Tie Yong Cao ◽  
Peng Zhang ◽  
Tao Zhu ◽  
Jing Feng Pan

In this paper, an object tracking approach is introduced for color video sequences. The approach presents the integration of color distributions and probabilistic principal component analysis (PPCA) into particle filtering framework. Color distributions are robust to partial occlusion, are rotation and scale invariant and are calculated efficiently. Principal Component Analysis (PCA) is used to update the eigenbasis and the mean, which can reflect the appearance changes of the tracked object. And a low dimensional subspace representation of PPCA efficiently adapts to these changes of appearance of the target object. At the same time, a forgetting factor is incorporated into the updating process, which can be used to economize on processing time and enhance the efficiency of object tracking. Computer simulation experiments demonstrate the effectiveness and the robustness of the proposed tracking algorithm when the target object undergoes pose and scale changes, defilade and complex background.


2019 ◽  
Vol 25 (6) ◽  
pp. 551-556
Author(s):  
Jungwook Han ◽  
Yonghoon Cho ◽  
Jinwhan Kim ◽  
Philyeob Lee

2018 ◽  
Vol 152 ◽  
pp. 03001
Author(s):  
Yun Zhe Cheong ◽  
Wei Jen Chew

Object tracking is a computer vision field that involves identifying and tracking either a single or multiple objects in an environment. This is extremely useful to help observe the movements of the target object like people in the street or cars on the road. However, a common issue with tracking an object in an environment with many moving objects is occlusion. Occlusion can cause the system to lose track of the object being tracked or after overlapping, the wrong object will be tracked instead. In this paper, a system that is able to correctly track occluded objects is proposed. This system includes algorithms such as foreground object segmentation, colour tracking, object specification and occlusion handling. An input video is input to the system and every single frame of the video is analysed. The foreground objects are segmented with object segmentation algorithm and tracked with the colour tracking algorithm. An ID is assigned to each tracked object. Results obtained shows that the proposed system is able to continuously track an object and maintain the correct identity even after is has been occluded by another object.


2017 ◽  
Author(s):  
Jae Woo Kim ◽  
Seong-Joon Bae ◽  
Seongjin Park ◽  
Do Hyung Kim

Sign in / Sign up

Export Citation Format

Share Document