End-to-side neurorrhaphy in brachial plexus reconstruction

2013 ◽  
Vol 119 (3) ◽  
pp. 689-694 ◽  
Author(s):  
Pavel Haninec ◽  
Libor Mencl ◽  
Radek Kaiser

Object Although a number of theoretical and experimental studies dealing with end-to-side neurorrhaphy (ETSN) have been published to date, there is still a considerable lack of clinical trials investigating this technique. Here, the authors describe their experience with ETSN in axillary and musculocutaneous nerve reconstruction in patients with brachial plexus palsy. Methods From 1999 to 2007, out of 791 reconstructed nerves in 441 patients treated for brachial plexus injury, the authors performed 21 axillary and 2 musculocutaneous nerve sutures onto the median, ulnar, or radial nerves. This technique was only performed in patients whose donor nerves, such as the thoracodorsal and medial pectoral nerves, which the authors generally use for repair of axillary and musculocutaneous nerves, respectively, were not available. In all patients, a perineurial suture was carried out after the creation of a perineurial window. Results The overall success rate of the ETSN was 43.5%. Reinnervation of the deltoid muscle with axillary nerve suture was successful in 47.6% of the patients, but reinnervation of the biceps muscle was unsuccessful in the 2 patients undergoing musculocutaneous nerve repair. Conclusions The authors conclude that ETSN should be performed in axillary nerve reconstruction but only when commonly used donor nerves are not available.

2012 ◽  
Vol 117 (3) ◽  
pp. 610-614 ◽  
Author(s):  
Pavel Haninec ◽  
Radek Kaiser

Object Nerve repair using motor fascicles of a different nerve was first described for the repair of elbow flexion (Oberlin technique). In this paper, the authors describe their experience with a similar method for axillary nerve reconstruction in cases of upper brachial plexus palsy. Methods Of 791 nerve reconstructions performed by the senior author (P.H.) between 1993 and 2011 in 441 patients with brachial plexus injury, 14 involved axillary nerve repair by fascicle transfer from the ulnar or median nerve. All 14 of these procedures were performed between 2007 and 2010. This technique was used only when there was a deficit of the thoracodorsal or long thoracic nerve, which are normally used as donors. Results Nine patients were followed up for 24 months or longer. Good recovery of deltoid muscle strength was seen in 7 (77.8%) of these 9 patients, and in 4 patients with less follow-up (14–23 months), for an overall success rate of 78.6%. The procedure was unsuccessful in 2 of the 9 patients with at least 24 months of follow-up. The first showed no signs of reinnervation of the axillary nerve by either clinical or electromyographic evaluation in 26 months of follow-up, and the second had Medical Research Council (MRC) Grade 2 strength in the deltoid muscle 36 months after the operation. The last of the group of 14 patients has had 12 months of follow-up and is showing progressive improvement of deltoid muscle function (MRC Grade 2). Conclusions The authors conclude that fascicle transfer from the ulnar or median nerve onto the axillary nerve is a safe and effective method for reconstruction of the axillary nerve in patients with upper brachial plexus injury.


2014 ◽  
Vol 14 (5) ◽  
pp. 518-526 ◽  
Author(s):  
Scott L. Zuckerman ◽  
Ilyas M. Eli ◽  
Manish N. Shah ◽  
Nadine Bradley ◽  
Christopher M. Stutz ◽  
...  

Object Axillary nerve palsy, isolated or as part of a more complex brachial plexus injury, can have profound effects on upper-extremity function. Radial to axillary nerve neurotization is a useful technique for regaining shoulder abduction with little compromise of other neurological function. A combined experience of this procedure used in children is reviewed. Methods A retrospective review of the authors' experience across 3 tertiary care centers with brachial plexus and peripheral nerve injury in children (younger than 18 years) revealed 7 cases involving patients with axillary nerve injury as part of an overall brachial plexus injury with persistent shoulder abduction deficits. Two surgical approaches to the region were used. Results Four infants (ages 0.6, 0.8, 0.8, and 0.6 years) and 3 older children (ages 8, 15, and 17 years) underwent surgical intervention. No patient had significant shoulder abduction past 15° preoperatively. In 3 cases, additional neurotization was performed in conjunction with the procedure of interest. Two surgical approaches were used: posterior and transaxillary. All patients displayed improvement in shoulder abduction. All were able to activate their deltoid muscle to raise their arm against gravity and 4 of 7 were able to abduct against resistance. The median duration of follow-up was 15 months (range 8 months to 5.9 years). Conclusions Radial to axillary nerve neurotization improved shoulder abduction in this series of patients treated at 3 institutions. While rarely used in children, this neurotization procedure is an excellent option to restore deltoid function in children with brachial plexus injury due to birth or accidental trauma.


Neurosurgery ◽  
2012 ◽  
Vol 71 (2) ◽  
pp. 417-429 ◽  
Author(s):  
Lynda J.-S. Yang ◽  
Kate W.-C. Chang ◽  
Kevin C. Chung

Abstract Nerve reconstruction for upper brachial plexus injury consists of nerve repair and/or transfer. Current literature lacks evidence supporting a preferred surgical treatment for adults with such injury involving shoulder and elbow function. We systematically reviewed the literature published from January 1990 to February 2011 using multiple databases to search the following: brachial plexus and graft, repair, reconstruction, nerve transfer, neurotization. Of 1360 articles initially identified, 33 were included in analysis, with 23 nerve transfer (399 patients), 6 nerve repair (99 patients), and 4 nerve transfer + proximal repair (117 patients) citations (mean preoperative interval, 6 ± 1.9 months). For shoulder abduction, no significant difference was found in the rates ratio (comparative probabilities of event occurrence) among the 3 methods to achieve a Medical Research Council (MRC) scale score of 3 or higher or a score of 4 or higher. For elbow flexion, the rates ratio for nerve transfer vs nerve repair to achieve an MRC scale score of 3 was 1.46 (P = .03); for nerve transfer vs nerve transfer + proximal repair to achieve an MRC scale score of 3 was 1.45 (P = .02) and an MRC scale score of 4 was 1.47 (P = .05). Therefore, for elbow flexion recovery, nerve transfer is somewhat more effective than nerve repair; however, no particular reconstruction strategy was found to be superior to recover shoulder abduction. When considering nerve reconstruction strategies, our findings do not support the sole use of nerve transfer in upper brachial plexus injury without operative exploration to provide a clear understanding of the pathoanatomy. Supraclavicular brachial plexus exploration plays an important role in developing individual surgical strategies, and nerve repair (when donor stumps are available) should remain the standard for treatment of upper brachial plexus injury except in isolated cases solely lacking elbow flexion.


2011 ◽  
Vol 68 (suppl_1) ◽  
pp. ons64-ons67 ◽  
Author(s):  
Charles P Toussaint ◽  
Eric L Zager

Abstract BACKGROUND: Injuries to the upper trunk of the brachial plexus are debilitating, affecting primarily shoulder abduction and elbow flexion. Treatment is aimed at restoring shoulder stabilization, shoulder abduction, and elbow flexion and may be accomplished by nerve grafting, nerve transfer, or functional muscular transfer. OBJECTIVE: To describe the double fascicular nerve transfer with the goal of restoring elbow flexion. METHODS: The double fascicular nerve transfer involves transferring an ulnar nerve fascicle to the musculocutaneous nerve innervating the biceps muscle and a median nerve fascicle transfer to a branch of musculocutaneous nerve supplying the brachialis muscle. RESULTS: The double fascicular nerve transfer is effective in restoring elbow flexion after severe upper-trunk brachial plexus injuries. CONCLUSION: Advantages of this procedure are that the nerve repair is done very close to the target muscle for reinnervation, so time to reinnervation is minimized, and the surgery takes place distal to the site of injury in nontraumatized tissue.


2020 ◽  
pp. 175319342093467
Author(s):  
Willem Pondaag ◽  
Martijn J. A. Malessy

The majority of children with obstetric brachial plexus injury show some degree of spontaneous recovery. This review explores the available evidence for the use surgical brachial plexus repair to improve outcome. So far, no randomized trial has been performed to evaluate the usefulness of nerve repair. The evidence level of studies comparing surgical treatment with non-surgical treatment is Level IV at best. The studies on natural history that are used for comparison with surgical series are also, unfortunately, of too low quality. Among experts, however, the general agreement is that nerve reconstruction is indicated when spontaneous recovery is absent or severely delayed at specific time points. A major obstacle in comparing or pooling obstetric brachial plexus injury patient series, either surgical or non-surgical, is the use of many different outcome measures. A requirement for multicentre studies is consensus on how to assess and report outcome, both concerning motor performance and functional evaluation.


2004 ◽  
Vol 16 (5) ◽  
pp. 1-13
Author(s):  
Martijn J. A. Malessy ◽  
Godard C. W. de Ruiter ◽  
Kees S. de Boer ◽  
Ralph T. W. M. Thomeer

Object The aim of this retrospective study was to evaluate the restoration of shoulder function by means of supra-scapular nerve neurotization in adult patients with proximal C-5 and C-6 lesions due to a severe brachial plexus traction injury (BPTI). The primary goal of brachial plexus reconstructive surgery was to restore the biceps muscle function and, secondarily, to reanimate shoulder function. Methods Suprascapular nerve neurotization was performed by grafting the C-5 nerve in 24 patients and by accessory or hypoglossal nerve transfer in 29 patients. Additional neurotization involving the axillary nerve could be performed in 18 patients. Postoperative needle electromyography studies of the supraspinatus, infraspinatus, and deltoid muscles showed signs of reinnervation in most patients; however, active glenohumeral shoulder function recovery was poor. In nine (17%) of 53 patients supraspinatus muscle strength was Medical Research Council (MRC) Grade 3 or 4 and in four (8%) infraspinatus muscle power was Grade 3 or 4. In 18 patients in whom deltoid muscle reinnervation was attempted, MRC Grade 3 or 4 function was demonstrated in two (11%). In the overall group, eight patients (15%) exhibited glenohumeral abduction with a mean of 44 ± 17° (standard deviation [SD]) (median 45°) and four patients (8%) exhibited glenohumeral exorotation with a mean of 48 ± 24° (SD) (median 53°). In only three patients (6%) were both functions regained. Conclusions The reanimation of shoulder function in patients with proximal C-5 and C-6 BPTIs following supra-scapular nerve neurotization is disappointingly low.


2017 ◽  
Vol 43 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Gráinne Bourke ◽  
Aleksandra M. McGrath ◽  
Mikael Wiberg ◽  
Lev N. Novikov

Obstetrical brachial plexus injury refers to injury observed at the time of delivery, which may lead to major functional impairment in the upper limb. In this study, the neuroprotective effect of early nerve repair following complete brachial plexus injury in neonatal rats was examined. Brachial plexus injury induced 90% loss of spinal motoneurons and 70% decrease in biceps muscle weight at 28 days after injury. Retrograde degeneration in spinal cord was associated with decreased density of dendritic branches and presynaptic boutons and increased density of astrocytes and macrophages/microglial cells. Early repair of the injured brachial plexus significantly delayed retrograde degeneration of spinal motoneurons and reduced the degree of macrophage/microglial reaction but had no effect on muscle atrophy. The results demonstrate that early nerve repair of neonatal brachial plexus injury could promote survival of injured motoneurons and attenuate neuroinflammation in spinal cord.


2019 ◽  
Vol 31 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Johannes A. Mayer ◽  
Laura A. Hruby ◽  
Stefan Salminger ◽  
Gerd Bodner ◽  
Oskar C. Aszmann

OBJECTIVESpinal accessory nerve palsy is frequently caused by iatrogenic damage during neck surgery in the posterior triangle of the neck. Due to late presentation, treatment regularly necessitates nerve grafts, which often results in a poor outcome of trapezius function due to long regeneration distances. Here, the authors report a distal nerve transfer using fascicles of the upper trunk related to axillary nerve function for reinnervation of the trapezius muscle.METHODSFive cases are presented in which accessory nerve lesions were reconstructed using selective fascicular nerve transfers from the upper trunk of the brachial plexus. Outcomes were assessed at 20 ± 6 months (mean ± SD) after surgery, and active range of motion and pain levels using the visual analog scale were documented.RESULTSAll 5 patients regained good to excellent trapezius function (3 patients had grade M5, 2 patients had grade M4). The mean active range of motion in shoulder abduction improved from 55° ± 18° before to 151° ± 37° after nerve reconstruction. In all patients, unrestricted shoulder arm movement was restored with loss of scapular winging when abducting the arm. Average pain levels decreased from 6.8 to 0.8 on the visual analog scale and subsided in 4 of 5 patients.CONCLUSIONSRestoration of spinal accessory nerve function with selective fascicle transfers related to axillary nerve function from the upper trunk of the brachial plexus is a good and intuitive option for patients who do not qualify for primary nerve repair or present with a spontaneous idiopathic palsy. This concept circumvents the problem of long regeneration distances with direct nerve repair and has the advantage of cognitive synergy to the target function of shoulder movement.


2008 ◽  
Vol 97 (4) ◽  
pp. 317-323 ◽  
Author(s):  
P. Songcharoen

Brachial plexus injury in adults is commonly caused by motorcycle accidents. Surgical management consists of nerve repair and nerve grafting for extraforaminal nerve root or trunk injury, and of neurotization or nerve transfer for nerve roots avulsion. In general, the results regarding restoration of shoulder and elbow function are good but reinnervation of the forearm muscles is less than safisfactory in respect to restoration of hand function. Functioning free muscle transfer in combination with selective nerve transfer is a reasonable alternative surgical procedure.


Sign in / Sign up

Export Citation Format

Share Document