scholarly journals A Systematic Review of Nerve Transfer and Nerve Repair for the Treatment of Adult Upper Brachial Plexus Injury

Neurosurgery ◽  
2012 ◽  
Vol 71 (2) ◽  
pp. 417-429 ◽  
Author(s):  
Lynda J.-S. Yang ◽  
Kate W.-C. Chang ◽  
Kevin C. Chung

Abstract Nerve reconstruction for upper brachial plexus injury consists of nerve repair and/or transfer. Current literature lacks evidence supporting a preferred surgical treatment for adults with such injury involving shoulder and elbow function. We systematically reviewed the literature published from January 1990 to February 2011 using multiple databases to search the following: brachial plexus and graft, repair, reconstruction, nerve transfer, neurotization. Of 1360 articles initially identified, 33 were included in analysis, with 23 nerve transfer (399 patients), 6 nerve repair (99 patients), and 4 nerve transfer + proximal repair (117 patients) citations (mean preoperative interval, 6 ± 1.9 months). For shoulder abduction, no significant difference was found in the rates ratio (comparative probabilities of event occurrence) among the 3 methods to achieve a Medical Research Council (MRC) scale score of 3 or higher or a score of 4 or higher. For elbow flexion, the rates ratio for nerve transfer vs nerve repair to achieve an MRC scale score of 3 was 1.46 (P = .03); for nerve transfer vs nerve transfer + proximal repair to achieve an MRC scale score of 3 was 1.45 (P = .02) and an MRC scale score of 4 was 1.47 (P = .05). Therefore, for elbow flexion recovery, nerve transfer is somewhat more effective than nerve repair; however, no particular reconstruction strategy was found to be superior to recover shoulder abduction. When considering nerve reconstruction strategies, our findings do not support the sole use of nerve transfer in upper brachial plexus injury without operative exploration to provide a clear understanding of the pathoanatomy. Supraclavicular brachial plexus exploration plays an important role in developing individual surgical strategies, and nerve repair (when donor stumps are available) should remain the standard for treatment of upper brachial plexus injury except in isolated cases solely lacking elbow flexion.

2020 ◽  
Vol 27 (07) ◽  
pp. 1442-1447
Author(s):  
Husnain Khan ◽  
Muhammad Shafique ◽  
Zahid Iqbal Bhatti ◽  
Tehseen Ahmad Cheema

Adult brachial plexus injury is a now a common problem due to high incidence of motorbike accidents. Among all types, C 5 and C6 (upper brachial plexus injury) is the most common. If the patient present within 6 months then nerve transfer is the preferred treatment. However, there are different options for nerve transfer and different approaches for surgery. Objectives: The objective of the study was to share our experience of nerve transfer close to target muscles in upper brachial plexus injury. Study Design: Quaisi experimental study. Setting: National Orthopaedic Hospital, Bahawalpur. Period: January 2015 to June 2018. Material & Methods: Total 32 patients were operated with isolated C5 and C6 injury. In all patients four nerve transfers were done. For shoulder abduction posterior approach was used and accessory to suprascapular nerve and one of motor branch of radial to axillary nerve were transferred. Modified Oberlin transfer was done for elbow flexion. Both shoulder abduction and elbow flexion was graded according to medical research council grading system. Results: After one year follow up more than 75% of the patients showed good to normal shoulder abduction and 87.50% showed good to normal elbow flexion. Residual Median nerve damage was noted only in two patients (6.25%). Conclusion: If there is no evidence of recovery up to three months early nerve transfer should be considered, ideal time is 3-6 months. Nerve transfer close to target muscle yields superior results. The shoulder stabilizers and abductors should ideally be innervated by double nerve transfer through posterior approach. Similarly double fascicular transfer (modified Oberlin) should be done for elbow flexion.


2011 ◽  
Vol 68 (suppl_1) ◽  
pp. ons64-ons67 ◽  
Author(s):  
Charles P Toussaint ◽  
Eric L Zager

Abstract BACKGROUND: Injuries to the upper trunk of the brachial plexus are debilitating, affecting primarily shoulder abduction and elbow flexion. Treatment is aimed at restoring shoulder stabilization, shoulder abduction, and elbow flexion and may be accomplished by nerve grafting, nerve transfer, or functional muscular transfer. OBJECTIVE: To describe the double fascicular nerve transfer with the goal of restoring elbow flexion. METHODS: The double fascicular nerve transfer involves transferring an ulnar nerve fascicle to the musculocutaneous nerve innervating the biceps muscle and a median nerve fascicle transfer to a branch of musculocutaneous nerve supplying the brachialis muscle. RESULTS: The double fascicular nerve transfer is effective in restoring elbow flexion after severe upper-trunk brachial plexus injuries. CONCLUSION: Advantages of this procedure are that the nerve repair is done very close to the target muscle for reinnervation, so time to reinnervation is minimized, and the surgery takes place distal to the site of injury in nontraumatized tissue.


2004 ◽  
Vol 101 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Allan J. Belzberg ◽  
Michael J. Dorsi ◽  
Phillip B. Storm ◽  
John L. Moriarity

Object. Brachial plexus injuries (BPIs) are often devastating events that lead to upper-extremity paralysis, rendering the limb a painful extraneous appendage. Fortunately, there are several nerve repair techniques that provide restoration of some function. Although there is general agreement in the medical community concerning which patients may benefit from surgical intervention, the actual repair technique for a given lesion is less clear. The authors sought to identify and better define areas of agreement and disagreement among experienced peripheral nerve surgeons as to the management of BPIs. Methods. The authors developed a detailed survey in two parts: one part addressing general issues related to BPI and the other presenting four clinical cases. The survey was mailed to 126 experienced peripheral nerve physicians and 49 (39%) participated in the study. The respondents represent 22 different countries and multiple surgical subspecialties. They performed a mean of 33 brachial plexus reconstructions annually. Areas of significant disagreement included the timing and indications for surgical intervention in birth-related palsy, treatment of neuroma-in-continuity, the best transfers to achieve elbow flexion and shoulder abduction, the use of intra- or extraplexal donors for motor neurotization, and the use of distal or proximal coaptation during nerve transfer. Conclusions. Experienced peripheral nerve surgeons disagree in important ways as to the management of BPI. The decisions made by the various treating physicians underscore the many areas of disagreement regarding the treatment of BPI, including the diagnostic approach to defining the injury, timing of and indications for surgical intervention in birth-related palsy, the treatment of neuroma-in-continuity, the choice of nerve transfers to achieve elbow flexion and shoulder abduction, the use of intra- or extraplexal donors for neurotization, and the use of distal or proximal coaptation during nerve transfer.


2004 ◽  
Vol 16 (5) ◽  
pp. 1-11 ◽  
Author(s):  
Allan J. Belzberg ◽  
Michael J. Dorsi ◽  
Phillip B. Storm ◽  
John L. Moriarity

Background Brachial plexus injuries (BPIs) are often devastating events that lead to upper-extremity paralysis, rendering it a painful extraneous appendage. Fortunately, there are several nerve repair techniques that provide restoration of some function. Although there is general agreement in the medical community concerning which patients may benefit from surgical intervention, the actual repair technique for a given lesion is less clear. Object The authors sought to identify and better define areas of agreement and disagreement among experienced peripheral nerve surgeons regarding the management of BPIs. Methods The authors developed a detailed survey in two parts: one part addressing general issues related to BPI and the other presenting four clinical cases. The survey was mailed to 126 experienced peripheral nerve physicians of whom 49 (39%) participated in the study. The respondents represented 22 countries and multiple surgical subspecialties. They performed a mean of 34 brachial plexus reconstructions annually. Areas of significant disagreement included the timing and indications for surgical intervention in birth-related palsy, management of neuroma-in-continuity, the best transfers to achieve elbow flexion and shoulder abduction, the use of intra- or extraplexal donors for motor neurotization, and the use of distal compared with proximal coaptation during nerve transfer. Conclusions Experienced peripheral nerve surgeons disagreed in important respects as to the management of BPI. The decisions made by the various treating physicians underscored the many areas of disagreement regarding the treatment of BPI including the diagnostic approach to defining the injury, timing of and indications for surgical intervention in birth-related palsy, management of neuroma-in-continuity, choice of nerve transfers to achieve elbow flexion and shoulder abduction, use of intra- or extraplexal donors for neurotization, and the use of distal or proximal coaptation during nerve transfer.


Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


2019 ◽  
Vol 24 (03) ◽  
pp. 283-288
Author(s):  
Yusuke Nagano ◽  
Daisuke Kawamura ◽  
Alaa Terkawi ◽  
Atsushi Urita ◽  
Yuichiro Matsui ◽  
...  

Background: Partial ulnar nerve transfer to the biceps motor branch of the musculocutaneous nerve (Oberlin’s transfer) is a successful approach to restore elbow flexion in patients with upper brachial plexus injury (BPI). However, there is no report on more than 10 years subjective and objective outcomes. The purpose of this study was to clarify the long-term outcomes of Oberlin’s transfer based on the objective evaluation of elbow flexion strength and subjective functional evaluation of patients. Methods: Six patients with BPI who underwent Oberlin’s transfer were reviewed retrospectively by their medical records. The mean age at surgery was 29.5 years, and the mean follow-up duration was 13 years. The objective functional outcomes were evaluated by biceps muscle strength using the Medical Research Council (MRC) grade at preoperative, postoperative, and final follow-up. The patient-derived subjective functional outcomes were evaluated using the Quick Disability of the Arm, Shoulder, and Hand (QuickDASH) questionnaire at final follow-up. Results: All patients had MRC grade 0 (M0) or 1 (M1) elbow flexion strength before operation. Four patients gained M4 postoperatively and maintained or increased muscle strength at the final follow-up. One patient gained M3 postoperatively and at the final follow-up. Although one patient achieved M4 postoperatively, the strength was reduced to M2 due to additional disorder. The mean score of QuickDASH was 36.5 (range, 7–71). Patients were divided into two groups; three patients had lower scores and the other three patients had higher scores of QuickDASH. Conclusions: Oberlin’s transfer is effective in the restoration of elbow flexion and can maintain the strength for more than 10 years. Patients with upper BPI with restored elbow flexion strength and no complicated nerve disorders have over ten-year subjective satisfaction.


2020 ◽  
Vol 19 (3) ◽  
pp. 249-254
Author(s):  
Mariano Socolovsky ◽  
Marcio de Mendonça Cardoso ◽  
Ana Lovaglio ◽  
Gilda di Masi ◽  
Gonzalo Bonilla ◽  
...  

Abstract BACKGROUND The phrenic nerve has been extensively reported to be a very powerful source of transferable axons in brachial plexus injuries. The most used technique used is supraclavicular sectioning of this nerve. More recently, video-assisted thoracoscopic techniques have been reported as a good alternative, since harvesting a longer phrenic nerve avoids the need of an interposed graft. OBJECTIVE To compare grafting vs phrenic nerve transfer via thoracoscopy with respect to mean elbow strength at final follow-up. METHODS A retrospective analysis was conducted among patients who underwent phrenic nerve transfer for elbow flexion at 2 centers from 2008 to 2017. All data analysis was performed in order to determine statistical significance among the analyzed variables. RESULTS A total of 32 patients underwent supraclavicular phrenic nerve transfer, while 28 underwent phrenic nerve transfer via video-assisted thoracoscopy. Demographic characteristics were similar in both groups. A statistically significant difference in elbow flexion strength recovery was observed, favoring the supraclavicular phrenic nerve section group against the intrathoracic group (P = .036). A moderate though nonsignificant difference was observed favoring the same group in mean elbow flexion strength. Also, statistical differences included patient age (P = .01) and earlier time from trauma to surgery (P = .069). CONCLUSION Comparing supraclavicular sectioning of the nerve vs video-assisted, intrathoracic nerve sectioning to restore elbow flexion showed that the former yielded statistically better results than the latter, in terms of the percentage of patients who achieve at least level 3 MRC strength at final follow-up. Furthermore, larger scale prospective studies assessing the long-term effects of phrenic nerve transfers remain necessary.


2008 ◽  
Vol 97 (4) ◽  
pp. 317-323 ◽  
Author(s):  
P. Songcharoen

Brachial plexus injury in adults is commonly caused by motorcycle accidents. Surgical management consists of nerve repair and nerve grafting for extraforaminal nerve root or trunk injury, and of neurotization or nerve transfer for nerve roots avulsion. In general, the results regarding restoration of shoulder and elbow function are good but reinnervation of the forearm muscles is less than safisfactory in respect to restoration of hand function. Functioning free muscle transfer in combination with selective nerve transfer is a reasonable alternative surgical procedure.


Sign in / Sign up

Export Citation Format

Share Document