Percutaneous pedicle screw placement with computer-navigated mapping in place of Kirschner wires

2013 ◽  
Vol 19 (5) ◽  
pp. 608-613 ◽  
Author(s):  
Thomas J. Gianaris ◽  
Gregory M. Helbig ◽  
Eric M. Horn

Object Percutaneous pedicle screw insertion techniques are commonly used to treat a variety of spinal disorders. Typically, Kirschner (K)-wires are used to guide the insertion of taps and screws during placement since the normal anatomical landmarks are not visualized. The use of K-wires adds risks, such as vascular and nerve injuries as well as increased radiation exposure given the use of fluoroscopy. The authors describe a series of patients who had percutaneous pedicle screws placed using a new computer-assisted navigation technique without the need for K-wires. Methods Minimally invasive percutaneous pedicle screw placement in the thoracic and lumbar spine was performed in a consecutive series of 15 patients for a variety of spinal pathologies. Intraoperative 3D CT images were obtained and used with a computer-assisted navigation system to insert an awl-tap into each pedicle. The tap location in the pedicle was marked with the navigation software, and the awl-tap was then removed. The navigation system was used to identify each landmark to insert the pedicle screw. Connecting rods were then inserted percutaneously under fluoroscopic guidance. Postoperative CT scans were obtained in each patient to evaluate screw placement. Results On postprocedure scanning, only 1 screw had a minor lateral and superior breach that was asymptomatic. To date, there have been no hardware failures. Conclusions Percutaneous pedicle screws can be placed effectively and safely without the use of K-wires.

Author(s):  
Praveen Satarasinghe ◽  
D. Kojo Hamilton ◽  
Michael Jace Tarver ◽  
Robert J. Buchanan ◽  
Michael T. Koltz

Object. Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D) computer-assisted virtual neuronavigation improves the precision of PS placement and minimize steps. Methods. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. 1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at anatomical entry point with screen projection showing virtual screw. 2) Navigated Stryker Cordless Driver with appropriate tap was used to access vertebral body through pedicle with screen projection again showing virtual screw. 3) Navigated Stryker Cordless Driver with actual screw was used with screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Results. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images to confirm hardware placement. Conclusions. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.


Author(s):  
Hsuan-Yu Chen ◽  
Xiu-Yun Xiao ◽  
Chih-Wei Chen ◽  
Hao-Kai Chou ◽  
Chen-Yu Sung ◽  
...  

2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


Neurosurgery ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 990-995 ◽  
Author(s):  
John K. Houten ◽  
Rani Nasser ◽  
Nrupen Baxi

Abstract BACKGROUND: Increasing popularity of minimally invasive surgery for lumbar fusion has led to dependence upon intraoperative fluoroscopy for pedicle screw placement, because limited muscle dissection does not expose the bony anatomy necessary for traditional, freehand techniques nor for registration steps in image-guidance techniques. This has raised concerns about cumulative radiation exposure for both surgeon and operating room staff. The recent introduction of the O-arm Multidimensional Surgical Imaging System allows for percutaneous placement of pedicle screws, but there is limited clinical experience with the technique and data examining its accuracy. OBJECTIVE: We present the first large clinical series of percutaneous screw placement using navigation of O-arm imaging and compare the results with the fluoroscopy-guided method. METHODS: A retrospective review of a 24-month period identified patients undergoing minimally invasive lumbar interbody fusion. The O-arm was introduced in the middle of this period and was used for all subsequent patients. Accuracy of screw placement was assessed by examination of axial computed tomography or O-arm scans. RESULTS: The fluoroscopy group included 141 screws in 42 patients, and the O-arm group included 205 screws in 52 patients. The perforation rate was 12.8% in the fluoroscopy group and 3% in the O-arm group (P < .001). Single-level O-arm procedures took a mean 200 (153–241) minutes, whereas fluoroscopy took 221 (178–302) minutes (P < .03). CONCLUSION: Percutaneous pedicle screw placement with the O-arm Multidimensional Intraoperative Imaging System is a safe and effective technique and provided improved overall accuracy and reduced operative time compared with conventional fluoroscopic techniques.


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


10.29007/qzxg ◽  
2018 ◽  
Author(s):  
Su-Hua Wu ◽  
Guo Zheng ◽  
Jian-Hua Chen ◽  
Sheng-Hai Wang

In open surgery for spine stabilization, the pedicle screws are often placed using patient-specific guide templates since they can improve the screw placement accuracy and simplify surgery. However, the conventional fit-and-lock template requires full exposure of the bony structures and is therefore not suitable for minimally invasive procedures. In this study, we constructed a novel guide template for percutaneous pedicle screw placement. Its feasibility and the accuracy of template-assisted pedicle screw placement were assessed using an excised calf spine model. As a result, all inserted guide wires and 27 of 30 simulated screws (90%) were completely in the pedicle. The remaining screws (10%) penetrated by less than 2 mm. The average distance and angular deviations of the guide wires were 1.46±0.60 mm and 1.10±0.84°. Our study demonstrate that this novel guide template is technically feasible and enhances the accuracy of percutaneous pedicle screw placement. Moreover, it may simplify the surgery and minimize intraoperative radiation. Further research on its clinical applications is warranted.


2021 ◽  
pp. 219256822110255
Author(s):  
Derong Xu ◽  
Xuexiao Ma ◽  
Lei Xie ◽  
Chuanli Zhou ◽  
Biao Kong

Study Design: Retrospective database study. Objectives: To compare the accuracy and safety of 2 types of a computer-assisted navigation system for percutaneous pedicle screw placement during endoscopic lumbar interbody fusion. Methods: From May 2019 to January 2020, data of 56 patients who underwent Endo-LIF with a robot-assisted system and with an electromagnetic navigation system were compared. The pedicles in all patients were subjected to postoperative CT scan to assess screw correction by measuring the perpendicular distance between the pedicle cortical wall and the screw surface. The registration and matching time, guide-wire insertion time, the entire surgery time, and X-ray exposure time were recorded. Results: In the robot-assisted group, 25 cases with 100 percutaneous pedicle screws were included, and the excellent and good rate was 95%. In the electromagnetic navigation group, 31 cases with 124 screws were included, and the excellent rate was 97.6%. There was no statistical difference between the two groups ( P > 0.05). The registration time and the total time for the surgery also showed no statistical differences ( P > 0.05). The main difference between the two groups was the guide-wire insertion time and the X-ray exposure time ( P < 0.05). Conclusions: Both electromagnetic navigation and robot-assisted are safe and efficient for percutaneous pedicle screw placement. Electromagnetic navigation system has obvious advantages over robot-assisted in terms of faster guide-wire placement and less X-ray exposure. Robot-assisted for percutaneous pedicle screw placement offers a preoperative planning system and a stable registration system, with obvious drawbacks of a strict training curve.


Sign in / Sign up

Export Citation Format

Share Document