Accuracy of percutaneous lumbar pedicle screw placement using the oblique or “owl's-eye” view and novel guidance technology

2010 ◽  
Vol 13 (4) ◽  
pp. 509-515 ◽  
Author(s):  
Cary Idler ◽  
Kevin W. Rolfe ◽  
Josef E. Gorek

Object This study was conducted to assess the in vivo safety and accuracy of percutaneous lumbar pedicle screw placement using the owl's-eye view of the pedicle axis and a new guidance technology system that facilitates orientation of the C-arm into the appropriate fluoroscopic view and the pedicle cannulation tool in the corresponding trajectory. Methods A total of 326 percutaneous pedicle screws were placed from L-3 to S-1 in 85 consecutive adult patients. Placement was performed using simple coaxial imaging of the pedicle with the owl's-eye fluoroscopic view. NeuroVision, a new guidance system using accelerometer technology, helped align the C-arm trajectory into the owl's-eye view and the cannulation tool in the same trajectory. Postoperative fine-cut CT scans were acquired to assess screw position. Medical records were reviewed for complications. Results Five of 326 screws breached a pedicle cortex—all breaches were less than 2 mm—for an accuracy rate of 98.47%. Five screws violated an adjacent facet joint. All were at the S-1 superior facet and included in a fusion. No screw violated an adjacent mobile facet or disc space. There were no cases of new or worsening neurological symptoms or deficits for an overall clinical accuracy of 100%. Conclusions The owl's-eye technique of coaxial pedicle imaging with the C-arm fluoroscopy, facilitated by NeuroVision, is a safe and accurate means by which to place percutaneous pedicle screws for degenerative conditions of the lumbar spine. This is the largest series reported to use the oblique or owl's-eye projection for percutaneous pedicle screw insertion. The accuracy of percutaneous screw insertion with this technique meets or exceeds that of other reported clinical series or techniques.

2019 ◽  
Vol 80 (04) ◽  
pp. 269-276
Author(s):  
Eleftherios Archavlis ◽  
Florian Ringel ◽  
Sven Kantelhardt

Background No studies have directly and quantitatively compared two-dimensional (2D) and three-dimensional (3D) planning as applied during conventional percutaneous or navigated percutaneous pedicle screw placement. Study Aims This lumbar pedicle-based stabilization simulation study aimed to investigate the risk of upper facet joint violation (FJV) during posterior percutaneous pedicle screw placement with conventional 2D planning of screw implantation (as a model for fluoroscopically guided screws) compared with 3D planning (as used with navigation techniques). Methods The placement of monosegmental lumbar pedicle screws using the data sets of 250 consecutive patients was simulated. Conventional surgery (using 2D fluoroscopic images anteroposterior and lateral view) was compared with screw placement using the 3D reconstruction of the planning mode of the same software. Results The 2D planning resulted in 140 upper FJVs (28% of cases), whereas 3D planning resulted in only 24 upper FJVs (4.8% of cases) (p < 0.05). Among those spinal segments with severe facet joint arthropathy, Pathria grades 3 and 4, FJV was significantly higher (p < 0.05) in the 2D-planned screws (64.7%) than in the 3D-planned screws (11.2%). A more lateral (mean distance: 3.5 mm) and inferior (mean distance: 2.5 mm) offset of the pedicle entry point and a larger medial angulation of the trajectory (mean angle: 9 degrees) were observed for the 3D-planned screws at all levels. Conclusion This study demonstrates that the use of 2D planning is associated with a higher risk of upper FJV than when a 3D imaging data set is used. Using a more lateral and inferior entry point for fluoroscopically guided pedicle screws could reduce the rate of FJV in percutaneous pedicle screw placement.


2017 ◽  
Vol 43 (2) ◽  
pp. E9 ◽  
Author(s):  
Brandon W. Smith ◽  
Jacob R. Joseph ◽  
Michael Kirsch ◽  
Mary Oakley Strasser ◽  
Jacob Smith ◽  
...  

OBJECTIVEPercutaneous pedicle screw insertion (PPSI) is a mainstay of minimally invasive spinal surgery. Traditionally, PPSI is a fluoroscopy-guided, multistep process involving traversing the pedicle with a Jamshidi needle, placement of a Kirschner wire (K-wire), placement of a soft-tissue dilator, pedicle tract tapping, and screw insertion over the K-wire. This study evaluates the accuracy and safety of PPSI with a simplified 2-step process using a navigated awl-tap followed by navigated screw insertion without use of a K-wire or fluoroscopy.METHODSPatients undergoing PPSI utilizing the K-wire–less technique were identified. Data were extracted from the electronic medical record. Complications associated with screw placement were recorded. Postoperative radiographs as well as CT were evaluated for accuracy of pedicle screw placement.RESULTSThirty-six patients (18 male and 18 female) were included. The patients’ mean age was 60.4 years (range 23.8–78.4 years), and their mean body mass index was 28.5 kg/m2 (range 20.8–40.1 kg/m2). A total of 238 pedicle screws were placed. A mean of 6.6 pedicle screws (range 4–14) were placed over a mean of 2.61 levels (range 1–7). No pedicle breaches were identified on review of postoperative radiographs. In a subgroup analysis of the 25 cases (69%) in which CT scans were performed, 173 screws were assessed; 170 (98.3%) were found to be completely within the pedicle, and 3 (1.7%) demonstrated medial breaches of less than 2 mm (Grade B). There were no complications related to PPSI in this cohort.CONCLUSIONSThis streamlined 2-step K-wire–less, navigated PPSI appears safe and accurate and avoids the need for radiation exposure to surgeon and staff.


Neurosurgery ◽  
2011 ◽  
Vol 70 (4) ◽  
pp. 990-995 ◽  
Author(s):  
John K. Houten ◽  
Rani Nasser ◽  
Nrupen Baxi

Abstract BACKGROUND: Increasing popularity of minimally invasive surgery for lumbar fusion has led to dependence upon intraoperative fluoroscopy for pedicle screw placement, because limited muscle dissection does not expose the bony anatomy necessary for traditional, freehand techniques nor for registration steps in image-guidance techniques. This has raised concerns about cumulative radiation exposure for both surgeon and operating room staff. The recent introduction of the O-arm Multidimensional Surgical Imaging System allows for percutaneous placement of pedicle screws, but there is limited clinical experience with the technique and data examining its accuracy. OBJECTIVE: We present the first large clinical series of percutaneous screw placement using navigation of O-arm imaging and compare the results with the fluoroscopy-guided method. METHODS: A retrospective review of a 24-month period identified patients undergoing minimally invasive lumbar interbody fusion. The O-arm was introduced in the middle of this period and was used for all subsequent patients. Accuracy of screw placement was assessed by examination of axial computed tomography or O-arm scans. RESULTS: The fluoroscopy group included 141 screws in 42 patients, and the O-arm group included 205 screws in 52 patients. The perforation rate was 12.8% in the fluoroscopy group and 3% in the O-arm group (P &lt; .001). Single-level O-arm procedures took a mean 200 (153–241) minutes, whereas fluoroscopy took 221 (178–302) minutes (P &lt; .03). CONCLUSION: Percutaneous pedicle screw placement with the O-arm Multidimensional Intraoperative Imaging System is a safe and effective technique and provided improved overall accuracy and reduced operative time compared with conventional fluoroscopic techniques.


2021 ◽  
Vol 12 ◽  
pp. 518
Author(s):  
Mohamed M. Arnaout ◽  
Magdy O. ElSheikh ◽  
Mansour A. Makia

Background: Transpedicular screws are extensively utilized in lumbar spine surgery. The placement of these screws is typically guided by anatomical landmarks and intraoperative fluoroscopy. Here, we utilized 2-week postoperative computed tomography (CT) studies to confirm the accuracy/inaccuracy of lumbar pedicle screw placement in 145 patients and correlated these findings with clinical outcomes. Methods: Over 6 months, we prospectively evaluated the location of 612 pedicle screws placed in 145 patients undergoing instrumented lumbar fusions addressing diverse pathology with instability. Routine anteroposterior and lateral plain radiographs were obtained 48 h after the surgery, while CT scans were obtained at 2 postoperative weeks (i.e., ideally these should have been performed intraoperatively or within 24–48 h of surgery). Results: Of the 612 screws, minor misplacement of screws (≤2 mm) was seen in 104 patients, moderate misplacement in 34 patients (2–4 mm), and severe misplacement in 7 patients (>4 mm). Notably, all the latter 7 (4.8% of the 145) patients required repeated operative intervention. Conclusion: Transpedicular screw insertion in the lumbar spine carries the risks of pedicle medial/lateral violation that is best confirmed on CT rather than X-rays/fluoroscopy alone. Here, we additional found 7 patients (4.8%) who with severe medial/lateral pedicle breach who warranting repeated operative intervention. In the future, CT studies should be performed intraoperatively or within 24–48 h of surgery to confirm the location of pedicle screws and rule in our out medial or lateral pedicle breaches.


2007 ◽  
Vol 7 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Gregory P. Lekovic ◽  
Eric A. Potts ◽  
Dean G. Karahalios ◽  
Graham Hall

Object The goal of this study was to compare the accuracy of thoracic pedicle screw placement aided by two different image-guidance modalities. Methods The charts of 40 consecutive patients who had undergone stabilization of the thoracic spine between January 2003 and January 2005 were retrospectively reviewed. Three patients were excluded from the study because, on the basis of preoperative findings, small pedicle diameter precluded the use of pedicle screws. Thus, a total of 37 patients had 277 screws placed with the aid of either virtual fluoroscopy or isocentric C-arm 3D navigation. The indications for surgery included trauma, degenerative disease, and tumor, and were similar in both groups. All 37 patients underwent postoperative computed tomography scanning, and an independent reviewer graded all screws based on axial, sagittal, and coronal projections for a full determination of the placement of the screw in the pedicle. Results The rate of unintended perforations was found to depend on pedicle diameter (p < 0.0001). There were no statistical differences between groups with regard to rate or grade of cortical perforations. Overall, the rate and grade of perforations was low, and there were no neurological or vascular complications. Conclusions The authors have shown that either image-guidance system may be used with a high degree of accuracy and safety. Because both systems were found to be comparably safe and accurate, the choice of image-guidance modality may be determined by the level of surgeon comfort and/or availability of the system.


2017 ◽  
Vol 42 (5) ◽  
pp. E14 ◽  
Author(s):  
Granit Molliqaj ◽  
Bawarjan Schatlo ◽  
Awad Alaid ◽  
Volodymyr Solomiichuk ◽  
Veit Rohde ◽  
...  

OBJECTIVEThe quest to improve the safety and accuracy and decrease the invasiveness of pedicle screw placement in spine surgery has led to a markedly increased interest in robotic technology. The SpineAssist from Mazor is one of the most widely distributed robotic systems. The aim of this study was to compare the accuracy of robot-guided and conventional freehand fluoroscopy-guided pedicle screw placement in thoracolumbar surgery.METHODSThis study is a retrospective series of 169 patients (83 women [49%]) who underwent placement of pedicle screw instrumentation from 2007 to 2015 in 2 reference centers. Pathological entities included degenerative disorders, tumors, and traumatic cases. In the robot-assisted cohort (98 patients, 439 screws), pedicle screws were inserted with robotic assistance. In the freehand fluoroscopy-guided cohort (71 patients, 441 screws), screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. Patients treated before 2009 were included in the fluoroscopy cohort, whereas those treated since mid-2009 (when the robot was acquired) were included in the robot cohort. Since then, the decision to operate using robotic assistance or conventional freehand technique has been based on surgeon preference and logistics. The accuracy of screw placement was assessed based on the Gertzbein-Robbins scale by a neuroradiologist blinded to treatment group. The radiological slice with the largest visible deviation from the pedicle was chosen for grading. A pedicle breach of 2 mm or less was deemed acceptable (Grades A and B) while deviations greater than 2 mm (Grades C, D, and E) were classified as misplacements.RESULTSIn the robot-assisted cohort, a perfect trajectory (Grade A) was observed for 366 screws (83.4%). The remaining screws were Grades B (n = 44 [10%]), C (n = 15 [3.4%]), D (n = 8 [1.8%]), and E (n = 6 [1.4%]). In the fluoroscopy-guided group, a completely intrapedicular course graded as A was found in 76% (n = 335). The remaining screws were Grades B (n = 57 [12.9%]), C (n = 29 [6.6%]), D (n = 12 [2.7%]), and E (n = 8 [1.8%]). The proportion of non-misplaced screws (corresponding to Gertzbein-Robbins Grades A and B) was higher in the robot-assisted group (93.4%) than the freehand fluoroscopy group (88.9%) (p = 0.005).CONCLUSIONSThe authors’ retrospective case review found that robot-guided pedicle screw placement is a safe, useful, and potentially more accurate alternative to the conventional freehand technique for the placement of thoracolumbar spinal instrumentation.


10.29007/qzxg ◽  
2018 ◽  
Author(s):  
Su-Hua Wu ◽  
Guo Zheng ◽  
Jian-Hua Chen ◽  
Sheng-Hai Wang

In open surgery for spine stabilization, the pedicle screws are often placed using patient-specific guide templates since they can improve the screw placement accuracy and simplify surgery. However, the conventional fit-and-lock template requires full exposure of the bony structures and is therefore not suitable for minimally invasive procedures. In this study, we constructed a novel guide template for percutaneous pedicle screw placement. Its feasibility and the accuracy of template-assisted pedicle screw placement were assessed using an excised calf spine model. As a result, all inserted guide wires and 27 of 30 simulated screws (90%) were completely in the pedicle. The remaining screws (10%) penetrated by less than 2 mm. The average distance and angular deviations of the guide wires were 1.46±0.60 mm and 1.10±0.84°. Our study demonstrate that this novel guide template is technically feasible and enhances the accuracy of percutaneous pedicle screw placement. Moreover, it may simplify the surgery and minimize intraoperative radiation. Further research on its clinical applications is warranted.


2020 ◽  
Author(s):  
Wei-Xing Xu ◽  
wei-guo Ding ◽  
Bin Xu ◽  
Tian-Hong Hu ◽  
Hong-Feng Sheng ◽  
...  

Abstract Background: We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. Methods: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. Results: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P < 0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P < 0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. Conclusion: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.


Sign in / Sign up

Export Citation Format

Share Document