Meta-analysis comparing deep brain stimulation of the globus pallidus and subthalamic nucleus to treat advanced Parkinson disease

2014 ◽  
Vol 121 (3) ◽  
pp. 709-718 ◽  
Author(s):  
Yi Liu ◽  
Weina Li ◽  
Changhong Tan ◽  
Xi Liu ◽  
Xin Wang ◽  
...  

Object Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). The globus pallidus internus (GPi) and the subthalamic nucleus (STN) are commonly targeted by this procedure. The purpose of this meta-analysis was to compare the efficacy of DBS in each region. Methods MEDLINE/PubMed, EMBASE, Web of Knowledge, and the Cochrane Library were searched for English-language studies published before April 2013. Results of studies investigating the efficacy and clinical outcomes of DBS of the GPi and STN for PD were analyzed. Results Six eligible trials containing a total of 563 patients were included in the analysis. Deep brain stimulation of the GPi or STN equally improved motor function, measured by the Unified Parkinson's Disease Rating Scale Section III (UPDRSIII) (motor section, for patients in on- and off-medication phases), within 1 year postsurgery. The change score for the on-medication phase was 0.68 (95% CI – 2.12 to 3.47, p > 0.05; 5 studies, 518 patients) and for the off-medication phase was 1.83 (95% CI – 3.12 to 6.77, p > 0.05; 5 studies, 518 patients). The UPDRS Section II (activities of daily living) scores for patients on medication improved equally in both DBS groups (p = 0.97). STN DBS allowed medication dosages to be reduced more than GPi DBS (95% CI 129.27–316.64, p < 0.00001; 5 studies, 540 patients). Psychiatric symptoms, measured by Beck Depression Inventory, 2nd edition scores, showed greater improvement from baseline after GPi DBS than after STN DBS (standardized mean difference −2.28, 95% CI −3.73 to −0.84, p = 0.002; 3 studies, 382 patients). Conclusions GPi and STN DBS improve motor function and activities of daily living for PD patients. Differences in therapeutic efficacy for PD were not observed between the 2 procedures. STN DBS allowed greater reduction in medication for patients, whereas GPi DBS provided greater relief from psychiatric symptoms. An understanding of other symptomatic aspects of targeting each region and long-term observations on therapeutic effects are needed.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ying Wang ◽  
Yongsheng Li ◽  
Xiaona Zhang ◽  
Anmu Xie

Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS) has proven effective in improving motor symptoms in Parkinson’s disease (PD) patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD), that is, Cohen’s d, with a 95% confidence interval (CI) was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P<0.001). STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus) and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.


2018 ◽  
Vol 128 (4) ◽  
pp. 1199-1213 ◽  
Author(s):  
Alireza Mansouri ◽  
Shervin Taslimi ◽  
Jetan H. Badhiwala ◽  
Christopher D. Witiw ◽  
Farshad Nassiri ◽  
...  

OBJECTIVEDeep brain stimulation (DBS) is effective in the management of patients with advanced Parkinson’s disease (PD). While both the globus pallidus pars interna (GPi) and the subthalamic nucleus (STN) are accepted targets, their relative efficacy in randomized controlled trials (RCTs) has not been established beyond 12 months. The objective of this study was to conduct a meta-analysis of RCTs to compare outcomes among adults with PD undergoing DBS of GPi or STN at various time points, including 36 months of follow-up.METHODSThe MEDLINE, Embase, CENTRAL, Web of Science, and CINAHL databases were searched. Registries for clinical trials, selected conference proceedings, and the table of contents for selected journals were also searched. Screens were conducted independently and in duplicate. Among the 623 studies initially identified (615 through database search, 7 through manual review of bibliographies, and 1 through a repeat screen of literature prior to submission), 19 underwent full-text review; 13 of these were included in the quantitative meta-analysis. Data were extracted independently and in duplicate. The Cochrane Collaboration tool was used to assess the risk of bias. The GRADE evidence profile tool was used to assess the quality of the evidence. Motor scores, medication dosage reduction, activities of daily living, depression, dyskinesias, and adverse events were compared. The influence of disease duration (a priori) and the proportion of male patients within a study (post hoc) were explored as potential subgroups.RESULTSThirteen studies (6 original cohorts) were identified. No difference in motor scores or activities of daily living was identified at 36 months. Medications were significantly reduced with STN stimulation (5 studies, weighted mean difference [WMD] −365.46, 95% CI −599.48 to −131.44, p = 0.002). Beck Depression Inventory scores were significantly better with GPi stimulation (3 studies; WMD 2.53, 95% CI 0.99–4.06 p = 0.001). The motor benefits of GPi and STN DBS for PD are similar.CONCLUSIONSThe motor benefits achieved with GPi and STN DBS for PD are similar. DBS of STN allows for a greater reduction of medication, but not as significant an advantage as DBS of GPi with respect to mood. This difference is sustained at 36 months. Further long-term studies are necessary.


Neurosurgery ◽  
2015 ◽  
Vol 76 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Srivatsan Pallavaram ◽  
Pierre-François D'Haese ◽  
Wendell Lake ◽  
Peter E. Konrad ◽  
Benoit M. Dawant ◽  
...  

Abstract BACKGROUND: Finding the optimal location for the implantation of the electrode in deep brain stimulation (DBS) surgery is crucial for maximizing the therapeutic benefit to the patient. Such targeting is challenging for several reasons, including anatomic variability between patients as well as the lack of consensus about the location of the optimal target. OBJECTIVE: To compare the performance of popular manual targeting methods against a fully automatic nonrigid image registration-based approach. METHODS: In 71 Parkinson disease subthalamic nucleus (STN)-DBS implantations, an experienced functional neurosurgeon selected the target manually using 3 different approaches: indirect targeting using standard stereotactic coordinates, direct targeting based on the patient magnetic resonance imaging, and indirect targeting relative to the red nucleus. Targets were also automatically predicted by using a leave-one-out approach to populate the CranialVault atlas with the use of nonrigid image registration. The different targeting methods were compared against the location of the final active contact, determined through iterative clinical programming in each individual patient. RESULTS: Targeting by using standard stereotactic coordinates corresponding to the center of the motor territory of the STN had the largest targeting error (3.69 mm), followed by direct targeting (3.44 mm), average stereotactic coordinates of active contacts from this study (3.02 mm), red nucleus-based targeting (2.75 mm), and nonrigid image registration-based automatic predictions using the CranialVault atlas (2.70 mm). The CranialVault atlas method had statistically smaller variance than all manual approaches. CONCLUSION: Fully automatic targeting based on nonrigid image registration with the use of the CranialVault atlas is as accurate and more precise than popular manual methods for STN-DBS.


2009 ◽  
Vol 463 (1) ◽  
pp. 12-16 ◽  
Author(s):  
Peter Novak ◽  
Joshua A. Klemp ◽  
Larry W. Ridings ◽  
Kelly E. Lyons ◽  
Rajesh Pahwa ◽  
...  

2002 ◽  
Vol 96 (4) ◽  
pp. 666-672 ◽  
Author(s):  
Tanya Simuni ◽  
Jurg L. Jaggi ◽  
Heather Mulholland ◽  
Howard I. Hurtig ◽  
Amy Colcher ◽  
...  

Object. Palliative neurosurgery has reemerged as a valid therapy for patients with advanced Parkinson disease (PD) that is complicated by severe motor fluctuations. Despite great enthusiasm for long-term deep brain stimulation (DBS) of the subthalamic nucleus (STN), existing reports on this treatment are limited. The present study was designed to investigate the safety and efficacy of bilateral stimulation of the STN for the treatment of PD. Methods. In 12 patients with severe PD, electrodes were stereotactically implanted into the STN with the assistance of electrophysiological conformation of the target location. All patients were evaluated preoperatively during both medication-off and -on conditions, as well as postoperatively at 3, 6, and 12 months during medication-on and -off states and stimulation-on and -off conditions. Tests included assessments based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. The stimulation effect was significant in patients who were in the medication-off state, resulting in a 47% improvement in the UPDRS Part III (Motor Examination) score at 12 months, compared with preoperative status. The benefit was stable for the duration of the follow-up period. Stimulation produced no additional benefit during the medication-on state, however, when compared with patient preoperative status. Significant improvements were made in reducing dyskinesias, fluctuations, and duration of off periods. Conclusions. This study demonstrates that DBS of the STN is an effective treatment for patients with advanced, medication-refractory PD. Deep brain stimulation of the STN produced robust improvements in motor performance in these severely disabled patients while they were in the medication-off state. Serious adverse events were common in this cohort; however, only two patients suffered permanent sequelae.


2018 ◽  
Vol 8 (4) ◽  
pp. 66 ◽  
Author(s):  
Elena Khabarova ◽  
Natalia Denisova ◽  
Aleksandr Dmitriev ◽  
Konstantin Slavin ◽  
Leo Verhagen Metman

2021 ◽  
Vol 15 ◽  
Author(s):  
Yu Diao ◽  
Yutong Bai ◽  
Tianqi Hu ◽  
Zixiao Yin ◽  
Huangguang Liu ◽  
...  

Pain from Parkinson's disease (PD) is a non-motor symptom affecting the quality of life and has prevalence of 20–80%. However, it is unclear whether subthalamic nucleus deep brain stimulation (STN–DBS), a well-established treatment for PD, is effective forPD-related pain. Thus, the objective of this meta-analysis was to investigate the efficacy of STN-DBS on PD-related pain and explore how its duration affects the efficacy of STN-DBS. A systematic search was performed using PubMed, Embase, and the Cochrane Library. Nine studies included numerical rating scale (NRS), visual analog scale (VAS), or non-motor symptom scale (NMSS) scores at baseline and at the last follow-up visit and therefore met the inclusion criteria of the authors. These studies exhibited moderate- to high-quality evidence. Two reviewers conducted assessments for study eligibility, risk of bias, data extraction, and quality of evidence rating. Random effect meta-analysis revealed a significant change in PD-related pain as assessed by NMSS, NRS, and VAS (P &lt;0.01). Analysis of the short and long follow-up subgroups indicated delayed improvement in PD-related pain. These findings (a) show the efficacy of STN-DBS on PD-related pain and provide higher-level evidence, and (b) implicate delayed improvement in PD-related pain, which may help programming doctors with supplement selecting target and programming.Systematic Review Registration: This study is registered in Open Science Framework (DOI: 10.17605/OSF.IO/DNM6K).


Sign in / Sign up

Export Citation Format

Share Document