scholarly journals Combined noninvasive language mapping by navigated transcranial magnetic stimulation and functional MRI and its comparison with direct cortical stimulation

2015 ◽  
Vol 123 (1) ◽  
pp. 212-225 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. METHODS The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. RESULTS The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. CONCLUSIONS In comparison with fMRI, rTMS is a more sensitive but less specific tool for preoperative language mapping than DCS. Moreover, rTMS is most reliable when using ERTs of 15%, 20%, 25%, or the 2-out-of-3 rule and a PTI of 0 msec. Furthermore, the combination of fMRI and rTMS leads to a higher correlation to DCS than both techniques alone, and the presented protocols for combined noninvasive language mapping might play a supportive role in the language-mapping assessment prior to the gold-standard intraoperative DCS.

2015 ◽  
Vol 123 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. METHODS Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. RESULTS The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). CONCLUSIONS Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.


Neurosurgery ◽  
2013 ◽  
Vol 72 (5) ◽  
pp. 808-819 ◽  
Author(s):  
Thomas Picht ◽  
Sandro M. Krieg ◽  
Nico Sollmann ◽  
Judith Rösler ◽  
Birat Niraula ◽  
...  

Abstract BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is increasingly used in presurgical brain mapping. Preoperative nTMS results correlate well with direct cortical stimulation (DCS) data in the identification of the primary motor cortex. Repetitive nTMS can also be used for mapping of speech-sensitive cortical areas. OBJECTIVE: The current cohort study compares the safety and effectiveness of preoperative nTMS with DCS mapping during awake surgery for the identification of language areas in patients with left-sided cerebral lesions. METHODS: Twenty patients with tumors in or close to left-sided language eloquent regions were examined by repetitive nTMS before surgery. During awake surgery, language-eloquent cortex was identified by DCS. nTMS results were compared for accuracy and reliability with regard to DCS by projecting both results into the cortical parcellation system. RESULTS: Presurgical nTMS maps showed an overall sensitivity of 90.2%, specificity of 23.8%, positive predictive value of 35.6%, and negative predictive value of 83.9% compared with DCS. For the anatomic Broca's area, the corresponding values were a sensitivity of 100%, specificity of 13.0%, positive predictive value of 56.5%, and negative predictive value of 100%, respectively. CONCLUSION: Good overall correlation between repetitive nTMS and DCS was observed, particularly with regard to negatively mapped regions. Noninvasive inhibition mapping with nTMS is evolving as a valuable tool for preoperative mapping of language areas. Yet its low specificity in posterior language areas in the current study necessitates further research to refine the methodology.


Author(s):  
Hanne-Rinck Jeltema ◽  
Ann-Katrin Ohlerth ◽  
Aranka de Wit ◽  
Michiel Wagemakers ◽  
Adrià Rofes ◽  
...  

Abstract The objective of this systematic review is to create an overview of the literature on the comparison of navigated transcranial magnetic stimulation (nTMS) as a mapping tool to the current gold standard, which is (intraoperative) direct cortical stimulation (DCS) mapping. A search in the databases of PubMed, EMBASE, and Web of Science was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations were used. Thirty-five publications were included in the review, describing a total of 552 patients. All studies concerned either mapping of motor or language function. No comparative data for nTMS and DCS for other neurological functions were found. For motor mapping, the distances between the cortical representation of the different muscle groups identified by nTMS and DCS varied between 2 and 16 mm. Regarding mapping of language function, solely an object naming task was performed in the comparative studies on nTMS and DCS. Sensitivity and specificity ranged from 10 to 100% and 13.3–98%, respectively, when nTMS language mapping was compared with DCS mapping. The positive predictive value (PPV) and negative predictive value (NPV) ranged from 17 to 75% and 57–100% respectively. The available evidence for nTMS as a mapping modality for motor and language function is discussed.


2013 ◽  
Vol 118 (1) ◽  
pp. 175-179 ◽  
Author(s):  
Nico Sollmann ◽  
Thomas Picht ◽  
Jyrki P. Mäkelä ◽  
Bernhard Meyer ◽  
Florian Ringel ◽  
...  

Up to now, navigated transcranial magnetic stimulation (nTMS) has been used for motor mapping in the vicinity of rolandic brain lesions. Recently, nTMS has also been suggested to be useful in mapping human language areas. The authors describe the case of a left-handed patient with a left-side glioblastoma within the opercular inferior frontal gyrus who presented with severe motor aphasia. Preoperative functional MRI (fMRI) indicated speech dominance of the right hemisphere and did not show any language-related activation in the vicinity of the tumor. Navigated TMS, however, showed a significantly higher rate of induced speech arrests for the left than for the right. Left-side direct cortical stimulation induced clear speech arrests during awake surgery. This case suggests that nTMS may be useful for preoperative speech mapping in tumors affecting the anatomy, vasculature, and brain oxygen levels and therefore impairing fMRI reliability.


2012 ◽  
Vol 117 (2) ◽  
pp. 354-362 ◽  
Author(s):  
Phiroz E. Tarapore ◽  
Matthew C. Tate ◽  
Anne M. Findlay ◽  
Susanne M. Honma ◽  
Danielle Mizuiri ◽  
...  

Object Direct cortical stimulation (DCS) is the gold-standard technique for motor mapping during craniotomy. However, preoperative noninvasive motor mapping is becoming increasingly accurate. Two such noninvasive modalities are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) imaging. While MEG imaging has already been extensively validated as an accurate modality of noninvasive motor mapping, TMS is less well studied. In this study, the authors compared the accuracy of TMS to both DCS and MEG imaging. Methods Patients with tumors in proximity to primary motor cortex underwent preoperative TMS and MEG imaging for motor mapping. The patients subsequently underwent motor mapping via intraoperative DCS. The loci of maximal response were recorded from each modality and compared. Motor strength was assessed at 3 months postoperatively. Results Transcranial magnetic stimulation and MEG imaging were performed on 24 patients. Intraoperative DCS yielded 8 positive motor sites in 5 patients. The median distance ± SEM between TMS and DCS motor sites was 2.13 ± 0.29 mm, and between TMS and MEG imaging motor sites was 4.71 ± 1.08 mm. In no patients did DCS motor mapping reveal a motor site that was unrecognized by TMS. Three of 24 patients developed new, early neurological deficit in the form of upper-extremity paresis. At the 3-month follow-up evaluation, 2 of these patients were significantly improved, experiencing difficulty only with fine motor tasks; the remaining patient had improvement to 4/5 strength. There were no deaths over the course of the study. Conclusions Maps of the motor system generated with TMS correlate well with those generated by both MEG imaging and DCS. Negative TMS mapping also correlates with negative DCS mapping. Navigated TMS is an accurate modality for noninvasively generating preoperative motor maps.


2020 ◽  
pp. 1-10 ◽  
Author(s):  
Ina Bährend ◽  
Max R. Muench ◽  
Heike Schneider ◽  
Rabih Moshourab ◽  
Felix R. Dreyer ◽  
...  

OBJECTIVEGiven the interindividual variance of functional language anatomy, risk prediction based merely on anatomical data is insufficient in language area–related brain tumor surgery, suggesting the need for direct cortical and subcortical mapping during awake surgery. Reliable, noninvasive preoperative methods of language localization hold the potential for reducing the necessity for awake procedures and may improve patient counseling and surgical planning. Repetitive navigated transcranial magnetic stimulation (rnTMS) is an evolving tool for localizing language-eloquent areas. The aim of this study was to investigate the reliability of rnTMS in locating cortical language sites.METHODSTwenty-five patients with brain tumors in speech-related areas were prospectively evaluated with preoperative rnTMS (5 Hz, train of five, average 105% resting motor threshold) and navigated direct cortical stimulation (DCS; bipolar, 50 Hz, 6–8 mA, 200-μsec pulse width) during awake surgeries employing a picture-naming task. Positive and negative stimulation spots within the craniotomy were documented in the same MRI data set. TMS and DCS language-positive areas were compared with regard to their spatial overlap, their allocation in a cortical parcellation system, and their linguistic qualities.RESULTSThere were over twofold more positive language spots within the exposed area on rnTMS than on DCS. The comparison of positive rnTMS and DCS (ground truth) overlaps revealed low sensitivity (35%) and low positive predictive value (16%) but high specificity (90%) and high negative predictive value (96%). Within the overlaps, there was no correlation in error quality. On DCS, 73% of language-positive spots were located in the pars opercularis and pars triangularis of the frontal operculum and 24% within the supramarginal gyrus and dorsal portion of the superior temporal gyrus, while on rnTMS language positivity was distributed more evenly over a large number of gyri.CONCLUSIONSThe current protocol for rnTMS for language mapping identified language-negative sites with good dependability but was unable to reliably detect language-positive spots. Further refinements of the technique will be needed to establish rnTMS language mapping as a useful clinical tool.


Sign in / Sign up

Export Citation Format

Share Document