scholarly journals Comparing navigated transcranial magnetic stimulation mapping and “gold standard” direct cortical stimulation mapping in neurosurgery: a systematic review

Author(s):  
Hanne-Rinck Jeltema ◽  
Ann-Katrin Ohlerth ◽  
Aranka de Wit ◽  
Michiel Wagemakers ◽  
Adrià Rofes ◽  
...  

Abstract The objective of this systematic review is to create an overview of the literature on the comparison of navigated transcranial magnetic stimulation (nTMS) as a mapping tool to the current gold standard, which is (intraoperative) direct cortical stimulation (DCS) mapping. A search in the databases of PubMed, EMBASE, and Web of Science was performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and recommendations were used. Thirty-five publications were included in the review, describing a total of 552 patients. All studies concerned either mapping of motor or language function. No comparative data for nTMS and DCS for other neurological functions were found. For motor mapping, the distances between the cortical representation of the different muscle groups identified by nTMS and DCS varied between 2 and 16 mm. Regarding mapping of language function, solely an object naming task was performed in the comparative studies on nTMS and DCS. Sensitivity and specificity ranged from 10 to 100% and 13.3–98%, respectively, when nTMS language mapping was compared with DCS mapping. The positive predictive value (PPV) and negative predictive value (NPV) ranged from 17 to 75% and 57–100% respectively. The available evidence for nTMS as a mapping modality for motor and language function is discussed.

2015 ◽  
Vol 123 (2) ◽  
pp. 314-324 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Language mapping by repetitive navigated transcranial magnetic stimulation (rTMS) is increasingly used and has already replaced functional MRI (fMRI) in some institutions for preoperative mapping of neurosurgical patients. Yet some factors affect the concordance of both methods with direct cortical stimulation (DCS), most likely by lesions affecting cortical oxygenation levels. Therefore, the impairment of the accuracy of rTMS and fMRI was analyzed and compared with DCS during awake surgery in patients with intraparenchymal lesions. METHODS Language mapping was performed by DCS, rTMS, and fMRI using an object-naming task in 27 patients with left-sided perisylvian lesions, and the induced language errors of each method were assigned to the cortical parcellation system. Subsequently, the receiver operating characteristics were calculated for rTMS and fMRI and compared with DCS as ground truth for regions with (w/) and without (w/o) the lesion in the mapped regions. RESULTS The w/ subgroup revealed a sensitivity of 100% (w/o 100%), a specificity of 8% (w/o 5%), a positive predictive value of 34% (w/o: 53%), and a negative predictive value (NPV) of 100% (w/o: 100%) for the comparison of rTMS versus DCS. Findings for the comparison of fMRI versus DCS within the w/ subgroup revealed a sensitivity of 32% (w/o: 62%), a specificity of 88% (w/o: 60%), a positive predictive value of 56% (w/o: 62%), and a NPV of 73% (w/o: 60%). CONCLUSIONS Although strengths and weaknesses exist for both rTMS and fMRI, the results show that rTMS is less affected by a brain lesion than fMRI, especially when performing mapping of language-negative cortical regions based on sensitivity and NPV.


2015 ◽  
Vol 123 (1) ◽  
pp. 212-225 ◽  
Author(s):  
Sebastian Ille ◽  
Nico Sollmann ◽  
Theresa Hauck ◽  
Stefanie Maurer ◽  
Noriko Tanigawa ◽  
...  

OBJECT Repetitive navigated transcranial magnetic stimulation (rTMS) is now increasingly used for preoperative language mapping in patients with lesions in language-related areas of the brain. Yet its correlation with intraoperative direct cortical stimulation (DCS) has to be improved. To increase rTMS's specificity and positive predictive value, the authors aim to provide thresholds for rTMS's positive language areas. Moreover, they propose a protocol for combining rTMS with functional MRI (fMRI) to combine the strength of both methods. METHODS The authors performed multimodal language mapping in 35 patients with left-sided perisylvian lesions by using rTMS, fMRI, and DCS. The rTMS mappings were conducted with a picture-to-trigger interval (PTI, time between stimulus presentation and stimulation onset) of either 0 or 300 msec. The error rates (ERs; that is, the number of errors per number of stimulations) were calculated for each region of the cortical parcellation system (CPS). Subsequently, the rTMS mappings were analyzed through different error rate thresholds (ERT; that is, the ER at which a CPS region was defined as language positive in terms of rTMS), and the 2-out-of-3 rule (a stimulation site was defined as language positive in terms of rTMS if at least 2 out of 3 stimulations caused an error). As a second step, the authors combined the results of fMRI and rTMS in a predefined protocol of combined noninvasive mapping. To validate this noninvasive protocol, they correlated its results to DCS during awake surgery. RESULTS The analysis by different rTMS ERTs obtained the highest correlation regarding sensitivity and a low rate of false positives for the ERTs of 15%, 20%, 25%, and the 2-out-of-3 rule. However, when comparing the combined fMRI and rTMS results with DCS, the authors observed an overall specificity of 83%, a positive predictive value of 51%, a sensitivity of 98%, and a negative predictive value of 95%. CONCLUSIONS In comparison with fMRI, rTMS is a more sensitive but less specific tool for preoperative language mapping than DCS. Moreover, rTMS is most reliable when using ERTs of 15%, 20%, 25%, or the 2-out-of-3 rule and a PTI of 0 msec. Furthermore, the combination of fMRI and rTMS leads to a higher correlation to DCS than both techniques alone, and the presented protocols for combined noninvasive language mapping might play a supportive role in the language-mapping assessment prior to the gold-standard intraoperative DCS.


Neurosurgery ◽  
2013 ◽  
Vol 72 (5) ◽  
pp. 808-819 ◽  
Author(s):  
Thomas Picht ◽  
Sandro M. Krieg ◽  
Nico Sollmann ◽  
Judith Rösler ◽  
Birat Niraula ◽  
...  

Abstract BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) is increasingly used in presurgical brain mapping. Preoperative nTMS results correlate well with direct cortical stimulation (DCS) data in the identification of the primary motor cortex. Repetitive nTMS can also be used for mapping of speech-sensitive cortical areas. OBJECTIVE: The current cohort study compares the safety and effectiveness of preoperative nTMS with DCS mapping during awake surgery for the identification of language areas in patients with left-sided cerebral lesions. METHODS: Twenty patients with tumors in or close to left-sided language eloquent regions were examined by repetitive nTMS before surgery. During awake surgery, language-eloquent cortex was identified by DCS. nTMS results were compared for accuracy and reliability with regard to DCS by projecting both results into the cortical parcellation system. RESULTS: Presurgical nTMS maps showed an overall sensitivity of 90.2%, specificity of 23.8%, positive predictive value of 35.6%, and negative predictive value of 83.9% compared with DCS. For the anatomic Broca's area, the corresponding values were a sensitivity of 100%, specificity of 13.0%, positive predictive value of 56.5%, and negative predictive value of 100%, respectively. CONCLUSION: Good overall correlation between repetitive nTMS and DCS was observed, particularly with regard to negatively mapped regions. Noninvasive inhibition mapping with nTMS is evolving as a valuable tool for preoperative mapping of language areas. Yet its low specificity in posterior language areas in the current study necessitates further research to refine the methodology.


Neurosurgery ◽  
2011 ◽  
Vol 69 (3) ◽  
pp. 581-589 ◽  
Author(s):  
Thomas Picht ◽  
Sein Schmidt ◽  
Stephan Brandt ◽  
Dietmar Frey ◽  
Henri Hannula ◽  
...  

Abstract BACKGROUND: Transcranial magnetic stimulation (TMS) is the only noninvasive method for presurgical stimulation mapping of cortical function. Recent technical advancements have significantly increased the focality and usability of the method. OBJECTIVE: To compare the accuracy of a 3-dimensional magnetic resonance imaging-navigated TMS system (nTMS) with the gold standard of direct cortical stimulation (DCS). METHODS: The primary motor areas of 20 patients with rolandic tumors were mapped preoperatively with nTMS at 110% of the individual resting motor threshold. Intraoperative DCS was available from 17 patients. The stimulus locations eliciting the largest electromyographic response in the target muscles (“hotspots”) were determined for both methods. RESULTS: The nTMS and DCS hotspots were located on the same gyrus in all cases. The mean ± SEM distance between the nTMS and DCS hotspots was 7.83 ± 1.18 mm for the abductor pollicis brevis (APB) muscle (n = 15) and 7.07 ± 0.88 mm for the tibialis anterior muscle (n = 8). When a low number of DCS stimulations was performed, the distance between the nTMS and DCS hotspots increased substantially (r = −0.86 for APB). After the exclusion of the cases with < 15 DCS APB responses, the mean ± SEM distance between the hotspots was only 4.70 ± 1.09 mm for APB (n = 8). CONCLUSION: Peritumoral mapping of the motor cortex by nTMS agreed well with the gold standard of DCS. Thus, nTMS is a reliable tool for preoperative mapping of motor function.


2012 ◽  
Vol 117 (2) ◽  
pp. 354-362 ◽  
Author(s):  
Phiroz E. Tarapore ◽  
Matthew C. Tate ◽  
Anne M. Findlay ◽  
Susanne M. Honma ◽  
Danielle Mizuiri ◽  
...  

Object Direct cortical stimulation (DCS) is the gold-standard technique for motor mapping during craniotomy. However, preoperative noninvasive motor mapping is becoming increasingly accurate. Two such noninvasive modalities are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) imaging. While MEG imaging has already been extensively validated as an accurate modality of noninvasive motor mapping, TMS is less well studied. In this study, the authors compared the accuracy of TMS to both DCS and MEG imaging. Methods Patients with tumors in proximity to primary motor cortex underwent preoperative TMS and MEG imaging for motor mapping. The patients subsequently underwent motor mapping via intraoperative DCS. The loci of maximal response were recorded from each modality and compared. Motor strength was assessed at 3 months postoperatively. Results Transcranial magnetic stimulation and MEG imaging were performed on 24 patients. Intraoperative DCS yielded 8 positive motor sites in 5 patients. The median distance ± SEM between TMS and DCS motor sites was 2.13 ± 0.29 mm, and between TMS and MEG imaging motor sites was 4.71 ± 1.08 mm. In no patients did DCS motor mapping reveal a motor site that was unrecognized by TMS. Three of 24 patients developed new, early neurological deficit in the form of upper-extremity paresis. At the 3-month follow-up evaluation, 2 of these patients were significantly improved, experiencing difficulty only with fine motor tasks; the remaining patient had improvement to 4/5 strength. There were no deaths over the course of the study. Conclusions Maps of the motor system generated with TMS correlate well with those generated by both MEG imaging and DCS. Negative TMS mapping also correlates with negative DCS mapping. Navigated TMS is an accurate modality for noninvasively generating preoperative motor maps.


2012 ◽  
Vol 9 (6) ◽  
pp. 660-664 ◽  
Author(s):  
Jan Coburger ◽  
Jari Karhu ◽  
Markus Bittl ◽  
Nikolai J. Hopf

Preoperative functional mapping in children younger than 5 years old remains a challenge. Awake functional MRI (fMRI) is usually not an option for these patients. Except for a description of passive fMRI in sedated patients and magnetoencephalography, no other noninvasive mapping method has been reported as a preoperative diagnostic tool in children. Therefore, invasive intraoperative direct cortical stimulation remains the method of choice. To the authors' knowledge, this is the first case of a young child undergoing preoperative functional motor cortex mapping with the aid of navigated transcranial magnetic stimulation (nTMS). In this 3-year-old boy with a rolandic ganglioglioma, awake preoperative mapping was performed using nTMS. A precise location of Broca area 4 could be established. The surgical approach was planned according to the preoperative findings. Intraoperative direct cortical stimulation verified the location of the nTMS hotspots, and complete resection of the precentral tumor was achieved. Navigated TMS is a precise tool for preoperative motor cortex mapping and is feasible even in very young pediatric patients. In children for whom performing the fMRI motor paradigm is challenging, nTMS is the only available option for functional mapping.


Sign in / Sign up

Export Citation Format

Share Document