scholarly journals An intraoperative motor tract positioning method in brain tumor surgery: technical note

2018 ◽  
Vol 129 (3) ◽  
pp. 576-582 ◽  
Author(s):  
Fumio Yamaguchi ◽  
Hirotomo Ten ◽  
Tadashi Higuchi ◽  
Tomoko Omura ◽  
Toyoyuki Kojima ◽  
...  

Intraoperative 3D recognition of the motor tract is indispensable to avoiding neural fiber injury in brain tumor surgery. However, precise localization of the tracts is sometimes difficult with conventional mapping methods. Thus, the authors developed a novel brain mapping method that enables the 3D recognition of the motor tract for intrinsic brain tumor surgeries. This technique was performed in 40 consecutive patients with gliomas adjacent to motor tracts that have a risk of intraoperative pyramidal tract damage. Motor tracts were electrically stimulated and identified by a handheld brain-mapping probe, the NY Tract Finder (NYTF). Sixteen-gauge plastic tubes were mounted onto the NYTF and inserted in the estimated direction of the motor tract with reference to navigational information. Only the NYTF was removed, leaving the plastic tubes in their places, immediately after muscle motor evoked potentials were recorded at the minimum stimulation current. Motor tracts were electrically identified in all cases. Three-dimensional information on the position of motor tracts was given by plastic tubes that were neurophysiologically placed. Tips of tubes showed the resection limit during tumor removal. Safe tumor resection with an arbitrary safety margin can be performed by adjusting the length of the plastic tubes. The motor tract positioning method enabled the 3D recognition of the motor tract by surgeons and provided for safe resection of tumors. Tumor resections were performed safely before damaging motor tracts, without any postoperative neurological deterioration.

Author(s):  
Gennadiy A. Katsevman ◽  
Walter Greenleaf ◽  
Ricardo García-García ◽  
Maria Victoria Perea ◽  
Valentina Ladera ◽  
...  

Neurosurgery ◽  
2001 ◽  
Vol 49 (5) ◽  
pp. 1145-1157 ◽  
Author(s):  
Franck-Emmanuel Roux ◽  
Danielle Ibarrola ◽  
Michel Tremoulet ◽  
Yves Lazorthes ◽  
Patrice Henry ◽  
...  

ABSTRACT OBJECTIVE The aim of this article was to analyze the technical and methodological issues resulting from the use of functional magnetic resonance image (fMRI) data in a frameless stereotactic device for brain tumor or pain surgery (chronic motor cortex stimulation). METHODS A total of 32 candidates, 26 for brain tumor surgery and six chronic motor cortex stimulation, were studied by fMRI scanning (61 procedures) and intraoperative cortical brain mapping under general anesthesia. The fMRI data obtained were analyzed with the Statistical Parametric Mapping 99 software, with an initial analysis threshold corresponding to P < 0.001. Subsequently, the fMRI data were registered in a frameless stereotactic neuronavigational device and correlated to brain mapping. RESULTS Correspondence between fMRI-activated areas and cortical mapping in primary motor areas was good in 28 patients (87%), although fMRI-activated areas were highly dependent on the choice of paradigms and analysis thresholds. Primary sensory- and secondary motor-activated areas were not correlated to cortical brain mapping. Functional mislocalization as a result of insufficient correction of the echo-planar distortion was identified in four patients (13%). Analysis thresholds (from P < 0.0001 to P < 10−12) more restrictive than the initial threshold (P < 0.001) had to be used in 25 of the 28 patients studied, so that fMRI motor data could be matched to cortical mapping spatial data. These analysis thresholds were not predictable preoperatively. Maximal tumor resection was accomplished in all patients with brain tumors. Chronic motor cortex electrode placement was successful in each patient (significant pain relief >50% on the visual analog pain scale). CONCLUSION In brain tumor surgery, fMRI data are helpful in surgical planning and guiding intraoperative brain mapping. The registration of fMRI data in anatomic slices or in the frameless stereotactic neuronavigational device, however, remained a potential source of functional mislocalization. Electrode placement for chronic motor cortex stimulation is a good indication to use fMRI data registered in a neuronavigational system and could replace somatosensory evoked potentials in detection of the central sulcus.


2020 ◽  
Vol 131 (4) ◽  
pp. 828-835 ◽  
Author(s):  
William O. Tatum ◽  
Jake H. McKay ◽  
Karim ReFaey ◽  
Anteneh M. Feyissa ◽  
Dan Ryan ◽  
...  

2019 ◽  
Vol 123 ◽  
pp. e280-e287 ◽  
Author(s):  
Woo Hyung Lee ◽  
Chul-Kee Park ◽  
Hee-Pyoung Park ◽  
Sung-Min Kim ◽  
Byung-Mo Oh ◽  
...  

2018 ◽  
Vol 8 (11) ◽  
pp. 202 ◽  
Author(s):  
Maria Pino ◽  
Alessia Imperato ◽  
Irene Musca ◽  
Rosario Maugeri ◽  
Giuseppe Giammalva ◽  
...  

Maximal safe resection represents the gold standard for surgery of malignant brain tumors. As regards gross-total resection, accurate localization and precise delineation of the tumor margins are required. Intraoperative diagnostic imaging (Intra-Operative Magnetic Resonance-IOMR, Intra-Operative Computed Tomography-IOCT, Intra-Operative Ultrasound-IOUS) and dyes (fluorescence) have become relevant in brain tumor surgery, allowing for a more radical and safer tumor resection. IOUS guidance for brain tumor surgery is accurate in distinguishing tumor from normal parenchyma, and it allows a real-time intraoperative visualization. We aim to evaluate the role of IOUS in gliomas surgery and to outline specific strategies to maximize its efficacy. We performed a literature research through the Pubmed database by selecting each article which was focused on the use of IOUS in brain tumor surgery, and in particular in glioma surgery, published in the last 15 years (from 2003 to 2018). We selected 39 papers concerning the use of IOUS in brain tumor surgery, including gliomas. IOUS exerts a notable attraction due to its low cost, minimal interruption of the operational flow, and lack of radiation exposure. Our literature review shows that increasing the use of ultrasound in brain tumors allows more radical resections, thus giving rise to increases in survival.


2014 ◽  
Vol 16 (suppl 2) ◽  
pp. ii64-ii64
Author(s):  
M. Riva ◽  
E. Fava ◽  
A. Comi ◽  
L. Fornia ◽  
V. Ferpozzi ◽  
...  

Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Danilo Gomes Quadros ◽  
Iuri S Neville ◽  
Francisco M Urena ◽  
Davi J Fontoura Solla ◽  
Wellingson S Paiva ◽  
...  

Abstract INTRODUCTION Until the 1990 s, perioperative care was based on empirical concepts and common practice, in part due to the paucity of scientific evidence. With the need of improving patient outcomes and reducing costs, the concern of developing safe and effective standards in postoperative care emerged. Recently, our institution has adopted a daily algorithm for hospital discharge (DAHD), which is a key point in the concept of Fast-Track Surgery. Thus, we designed a study to evaluate whether there was a difference in length of stay (LOS), rate of complications, and hospital costs after the introduction of the DAHD in the postoperative management of patients who underwent brain tumor resection. METHODS This is a retrospective cohort study. All consecutive patients who underwent brain tumor resection in 2017 by a single neurosurgeon were analyzed. Demographic and procedure-related variables, clinical outcomes, and healthcare costs within 30 d after surgery were collected and compared in patients before (preimplementation) and after (postimplementation) the daily algorithm for hospital discharge (DAHD). RESULTS About 61 patients who had been submitted to brain tumor resection were studied (preimplementation 32, postimplementation 29). The baseline demographic characteristics were similar between the groups. After the DAHD implementation, LOS after surgery in days decreased significantly (median 5 vs 3 days; P = .001). The proportion of patients who were discharged within day 1 or 2 after surgery was significantly higher after DAHD protocol (3.1% vs 44.8%; P < .001). Major and minor complications rates, readmission rate, and unplanned return to hospital in 30-day follow-up were comparable between the groups. There was a significant reduction in the median costs of hospitalization in DAHD group (US$2135 vs US$2765, P = .043), mainly due to a reduction in median ward costs (US$922 vs US$1623, P = .009). CONCLUSION Early discharge after brain tumor surgery was safe, inexpensive, reduced the LOS, and hospitalization costs without increase in readmission rate or postoperative complications.


Neurosurgery ◽  
2001 ◽  
Vol 48 (5) ◽  
pp. 1075-1081 ◽  
Author(s):  
Henry H. Zhou ◽  
Patrick J. Kelly

Abstract OBJECTIVE This study was designed to examine whether transcranial electrical motor evoked potential (MEP) monitoring is safe, feasible, and valuable for brain tumor surgery. METHODS Fifty consecutive patients undergoing brain tumor resection were studied, using nitrous oxide/propofol anesthesia. MEPs were continuously recorded throughout surgery, using a Sentinel 4 evoked potential system (Axon Systems, Inc., Hauppauge, NY). The MEPs were elicited by transcranial electrical stimulation (train of 5; stimulation rate, 0.5–2 Hz; square wave pulse with a time constant of 0.5 ms; stimulation intensity, 40–160 mA) through spiral electrodes placed over the primary motor cortex and were recorded by needle electrodes inserted into the contralateral orbicularis oris, biceps, abductor pollicis brevis, and anterior tibialis muscles. When MEP amplitudes decreased by more than 50%, MEP stimulation was repeated, with increased stimulation intensity, and MEP changes were reported to the surgeon. The motor function of each patient was examined before and after surgery, using a reproducible scale. The relationship between MEP amplitude decreases and worsening motor status was analyzed using linear regression. RESULTS Preoperative neurological examinations revealed mild to moderate motor deficits (2/5 to 4/5) for 38% of patients (19 of 50 patients). Most of the patients (96%) exhibited recordable baseline MEPs. Persistent MEP decreases of more than 50% were noted for eight patients (16%) (11 muscles). The MEPs were completely abolished in two patients (three muscles). The degree of postoperative worsening of motor status was correlated with the degree of intraoperative MEP amplitude reduction (r = −0.864; P &lt; 0.001). CONCLUSION Persistent intraoperative MEP reductions of more than 50% were associated with postoperative motor deficits. The degree of MEP amplitude reduction was correlated with postoperative worsening of motor status. Transcranial electrical MEP monitoring is feasible, safe, and valuable for brain tumor surgery.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 293-293
Author(s):  
Aliasgar V Moiyadi

Abstract INTRODUCTION Navigated 3D-ultrasound (nUS) is a powerful and multi-purpose adjunct during tumor resections. We review our cumulative results in a dedicated neuro-oncology service spanning a six year period, highlighting its role in glioma surgery. METHODS Since 2011 we have been used a navigated 3D ultrasound system for intraoperative image guidance during brain tumor surgery in 300 cases. A prospectively updated database was queried to retrieve demographic, clinico-radiological and pathological details. Specifically, we evaluated the utility of the IOUS in different setups and assessed its predictive accuracy and impact on extent of resection (EOR) as well as survival in gliomas. RESULTS >300 (204 males/96 females) brain tumors were operated [197 high grade gliomas, 28 LGG, 24 Meningiomas, and 51 other tumors]. Radical resection/debulking was intended in 270 (90%). In 30 (10%), only frameless biopsy was performed. The US was intended for resection control in 219 (73%) tumors, most of them being intrinsic gliomas. Intermediate scans prompted further resection in 101 cases (46%). A final resection control scan was performed in 176 cases (confirming complete excision in 99, and residual tumor which could not be further resected in 77). The nUS was a very useful tool in tumor surgery, providing a good diagnostic accuracy (85-90%) in predicting tumor residue. It also helped us improve the EOR in malignant gliomas as well as non-enhancing gliomas. In the subset of resectable tumors, the gross total resection rate was 88%. Further, in a small subset of malignant gliomas, we demonstrated that it helps extend tumor resection beyond the contrast enhancement zone. In GBMs, in a multivariate model, use of the nUS was an independent predictor of survival. CONCLUSION Considering the ease of use, widespread accessibility and low-cost nature, IOUS can be a potentially useful adjunct during a range of neurosurgical procedures, especially tumor resections.


2005 ◽  
Vol 1278 ◽  
pp. 113-116
Author(s):  
T. Miyagishima ◽  
A. Takahashi ◽  
S. Ishiuchi ◽  
M. Hirato ◽  
N. Saito

Sign in / Sign up

Export Citation Format

Share Document