scholarly journals Integration of rotational angiography enables better dose planning in Gamma Knife radiosurgery for brain arteriovenous malformations

2018 ◽  
Vol 129 (Suppl1) ◽  
pp. 17-25 ◽  
Author(s):  
Hirotaka Hasegawa ◽  
Shunya Hanakita ◽  
Masahiro Shin ◽  
Mariko Kawashima ◽  
Taichi Kin ◽  
...  

OBJECTIVEIn Gamma Knife radiosurgery (GKS) for arteriovenous malformations (AVMs), CT angiography (CTA), MRI, and digital subtraction angiography (DSA) are generally used to define the nidus. Although the AVM angioarchitecture can be visualized with superior resolution using rotational angiography (RA), the efficacy of integrating RA into the GKS treatment planning process has not been elucidated.METHODSUsing data collected from 25 consecutive patients with AVMs who were treated with GKS at the authors’ institution, two neurosurgeons independently created treatment plans for each patient before and after RA integration. For all patients, MR angiography, contrasted T1 imaging, CTA, DSA, and RA were performed before treatment. The prescription isodose volume before (PIVB) and after (PIVA) RA integration was measured. For reference purposes, a reference target volume (RTV) for each nidus was determined by two other physicians independent of the planning surgeons, and the RTV covered by the PIV (RTVPIV) was established. The undertreated volume ratio (UVR), overtreated volume ratio (OVR), and Paddick’s conformal index (CI), which were calculated as RTVPIV/RTV, RTVPIV/PIV, and (RTVPIV)2/(RTV × PIV), respectively, were measured by each neurosurgeon before and after RA integration, and the surgeons’ values at each point were averaged. Wilcoxon signed-rank tests were used to compare the values obtained before and after RA integration. The percentage change from before to after RA integration was calculated for the average UVR (%ΔUVRave), OVR (%ΔOVRave), and CI (%ΔCIave) in each patient, as ([value after RA integration]/[value before RA integration] − 1) × 100. The relationships between prior histories and these percentage change values were examined using Wilcoxon signed-rank tests.RESULTSThe average values obtained by the two surgeons for the median UVR, OVR, and CI were 0.854, 0.445, and 0.367 before RA integration and 0.882, 0.478, and 0.463 after RA integration, respectively. All variables significantly improved after compared with before RA integration (UVR, p = 0.009; OVR, p < 0.001; CI, p < 0.001). Prior hemorrhage was significantly associated with larger %ΔOVRave (median 20.8% vs 7.2%; p = 0.023) and %ΔCIave (median 33.9% vs 13.8%; p = 0.014), but not %ΔUVRave (median 4.7% vs 4.0%; p = 0.449).CONCLUSIONSIntegrating RA into GKS treatment planning may permit better dose planning owing to clearer visualization of the nidus and, as such, may reduce undertreatment and waste irradiation. Further studies examining whether the observed RA-related improvement in dose planning also improves the radiosurgical outcome are needed.

Neurosurgery ◽  
2021 ◽  
Vol 89 (Supplement_2) ◽  
pp. S133-S133
Author(s):  
Yuki Shinya ◽  
Hirotaka Hasegawa ◽  
Masahiro Shin ◽  
Mariko Kawashima ◽  
Takehiro Sugiyama ◽  
...  

2021 ◽  
Vol 1 (25) ◽  
Author(s):  
Atsushi Shimizu ◽  
Koji Yamaguchi ◽  
Yoshikazu Okada ◽  
Takayuki Funatsu ◽  
Tatsuya Ishikawa ◽  
...  

BACKGROUND Gamma Knife radiosurgery (GKRS) is a safe and effective treatment, but it has a risk of bleeding. Herein, the authors describe their experience with some patients who required surgical removal of cerebral arteriovenous malformations (AVMs) located mainly in eloquent areas of the brain after GKRS, and they consider the advantages of surgical removal after GKRS. OBSERVATIONS Twelve patients who had undergone surgical removal of AVMs after GKRS at Tokyo Women’s Medical University between April 2013 and July 2019 were selected for analysis. All participants underwent GKRS as first-line therapy for AVMs located in an eloquent region or if requested by the patient. Complete obliteration was achieved in 7 patients, and the size of the nidus decreased in 3 patients during the follow-up period. The Spetzler-Martin grade decreased in 11 patients. Three patients experienced symptomatic intracerebral hemorrhage before and after confirmation of complete obliteration of the nidus via GKRS, and 7 patients experienced some neurological deficits because of an encapsulated expanding hematoma. All patients underwent resection of the nidus without complications. The preoperative neurological deficits improved in 6 patients and remained unchanged in 6 patients. LESSONS This report indicates that performing GKRS before surgery may be useful for future multimodal therapy.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii160-ii161
Author(s):  
Esra Sümer ◽  
Ece Tek ◽  
Meriç Şengöz ◽  
M Necmettiin Pamir ◽  
Alp Dinçer ◽  
...  

Abstract Gamma knife radiosurgery (GKRS) delivers an unevenly distributed radiation dose to a tumor, with a sharp falloff outside the target. Although the dose inhomogeneity within a tumor is strongly influenced by its shape, routine GKRS dose planning does not account for it. We hypothesized that shape irregularity measures were correlated with treatment planning indices, and might provide insight during treatment planning. The aims of this study were to quantify the shape irregularity measures in vestibular schwannomas, estimate their correlations with core radiosurgical planning measures, and define the most predictive shape feature for dose effectiveness. METHODS: Four dose plan indices, which were the selectivity index (SI), gradient index (GI), efficiency index (EI), and Paddick’s conformity index (PCI) were estimated from the GKRS plans of 234 vestibular schwannomas. All dose plans were prepared using Gamma Plan 10.0 and above and all treatments were delivered using a perfexion/ICON platform. Three-dimensional (3D) tumor models were rendered using 3D Slicer Software from segmented T1-weighted MR images. Sixteen irregularity measures were calculated for each tumor using Radiomics in MATLAB. Spearman correlation coefficients (r) were computed to find associations of the dose plan indices with the irregularity descriptors. The most predictive shape feature for dose efficiency was identified using the least absolute shrinkage and selection operator (Lasso). RESULTS: The shape irregularity measures were negatively correlated with SI, EI, and PCI, and positively correlated with GI. Volumetric index of sphericity (VioS) had the highest correlations with SI (r = 0.63, p= 3.27E-23), GI (r= -0.58, p= 1.10E-19), EI (r = 0.69, p= 0.00), and PCI(r= 0.68, p = 6.73E-28), and Lasso feature selection identified VioS as the most important feature for predicting all dose plan indices. CONCLUSION: VioS provides a numerical quantification of tumor shape irregularity, and it is highly correlated with the GKRS dose planning indices. *indicates co-senior authors


1993 ◽  
Vol 21 (6) ◽  
pp. 449-454 ◽  
Author(s):  
Yoshinobu SEO ◽  
Seiji FUKUOKA ◽  
Takehiko SASAKI ◽  
Toshio HYOGO ◽  
Masami TAKANASHI ◽  
...  

2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 113-119 ◽  
Author(s):  
D. Hung-Chi Pan ◽  
Wan-Yuo Guo ◽  
Wen-Yuh Chung ◽  
Cheng-Ying Shiau ◽  
Yue-Cune Chang ◽  
...  

Object. A consecutive series of 240 patients with arteriovenous malformations (AVMs) treated by gamma knife radiosurgery (GKS) between March 1993 and March 1999 was evaluated to assess the efficacy and safety of radiosurgery for cerebral AVMs larger than 10 cm3 in volume. Methods. Seventy-six patients (32%) had AVM nidus volumes of more than 10 cm3. During radiosurgery, targeting and delineation of AVM nidi were based on integrated stereotactic magnetic resonance (MR) imaging and x-ray angiography. The radiation treatment was performed using multiple small isocenters to improve conformity of the treatment volume. The mean dose inside the nidus was kept between 20 Gy and 24 Gy. The margin dose ranged between 15 to 18 Gy placed at the 55 to 60% isodose centers. Follow up ranged from 12 to 73 months. There was complete obliteration in 24 patients with an AVM volume of more than 10 cm3 and in 91 patients with an AVM volume of less than 10 cm3. The latency for complete obliteration in larger-volume AVMs was significantly longer. In Kaplan—Meier analysis, the complete obliteration rate in 40 months was 77% in AVMs with volumes between 10 to 15 cm3, as compared with 25% for AVMs with a volume of more than 15 cm3. In the latter, the obliteration rate had increased to 58% at 50 months. The follow-up MR images revealed that large-volume AVMs had higher incidences of postradiosurgical edema, petechiae, and hemorrhage. The bleeding rate before cure was 9.2% (seven of 76) for AVMs with a volume exceeding 10 cm3, and 1.8% (three of 164) for AVMs with a volume less than 10 cm3. Although focal edema was more frequently found in large AVMs, most of the cases were reversible. Permanent neurological complications were found in 3.9% (three of 76) of the patients with an AVM volume of more than 10 cm3, 3.8% (three of 80) of those with AVM volume of 3 to 10 cm3, and 2.4% (two of 84) of those with an AVM volume less than 3 cm3. These differences in complications rate were not significant. Conclusions. Recent improvement of radiosurgery in conjunction with stereotactic MR targeting and multiplanar dose planning has permitted the treatment of larger AVMs. It is suggested that gamma knife radiosurgery is effective for treating AVMs as large as 30 cm3 in volume with an acceptable risk.


2000 ◽  
Vol 93 (supplement_3) ◽  
pp. 96-101 ◽  
Author(s):  
Jong Hee Chang ◽  
Jin Woo Chang ◽  
Yong Gou Park ◽  
Sang Sup Chung

Object. The authors sought to evaluate the effects of gamma knife radiosurgery (GKS) on cerebral arteriovenous malformations (AVMs) and the factors associated with complete occlusion. Methods. A total of 301 radiosurgical procedures for 277 cerebral AVMs were performed between December 1988 and December 1999. Two hundred seventy-eight lesions in 254 patients who were treated with GKS from May 1992 to December 1999 were analyzed. Several clinical and radiological parameters were evaluated. Conclusions. The total obliteration rate for the cases with an adequate radiological follow up of more than 2 years was 78.9%. In multivariate analysis, maximum diameter, angiographically delineated shape of the AVM nidus, and the number of draining veins significantly influenced the result of radiosurgery. In addition, margin radiation dose, Spetzler—Martin grade, and the flow pattern of the AVM nidus also had some influence on the outcome. In addition to the size, topography, and radiosurgical parameters of AVMs, it would seem to be necessary to consider the angioarchitectural and hemodynamic aspects to select proper candidates for radiosurgery.


1996 ◽  
Vol 24 (6) ◽  
pp. 465-473 ◽  
Author(s):  
Masaaki YAMAMOTO ◽  
Mitsunobu IDE ◽  
Minoru JIMBO ◽  
Kintomo TAKAKURA ◽  
Tatsuo HIRAI ◽  
...  

2002 ◽  
Vol 30 (3) ◽  
pp. 204-207
Author(s):  
Kazuhiro YAMANAKA ◽  
Yoshiyasu IWAI ◽  
Masaki KOMIYAMA ◽  
Hideki NAKAJIMA ◽  
Toshihiro YASUI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document