Neuroprotective effects of nicardipine in a rat model of ischemia and reperfusion

1997 ◽  
Vol 2 (6) ◽  
pp. E4 ◽  
Author(s):  
Mamoru Kittaka ◽  
Steven L. Giannotta ◽  
Vladimir Zelman ◽  
Jorge D. Correale ◽  
Christopher M. DeGiorgio ◽  
...  

A reversible middle cerebral artery occlusion was performed in rats to determine whether nicardipine, a dihydropyridine voltage-sensitive Ca++ channel (VSCC) antagonist, exerts neuroprotective effects when administered 10 minutes following an ischemic insult, and if it does, whether this is due to its vasodilatory action and effect on cerebral blood flow (CBF) or to direct blockade of Ca++ entry into ischemic brain cells. An increase in the intracellular calcium, [Ca++]i, plays a major role in neuronal injury during cerebral ischemia. Although a large amount of Ca++ enters neurons through the VSCC during ischemia, inconsistent neuroprotective effects have been reported with the antagonists of the VSCC. An intraperitoneal injection of nicardipine (1.2 mg/kg) was administered to rats at 10 minutes after the onset of ischemia, and 8, 16, and 24 hours after occlusion. Cortical CBF was determined by laser-Doppler flowmetry. Neurological and neuropathological examinations were performed after 72 hours. Neuron-specific enolase, a specific marker for the incidence of neuronal injury, was measured in plasma. The CBF in the ischemic core and periphery, as well as brain temperature and physiological parameters, were not affected by nicardipine during occlusion or reperfusion. However, nicardipine treatment significantly improved motor neurological outcome by 32%, and the infarction and edema volume in the pallium as well as the edema volume in the striatum were significantly reduced by 28%, 37%, and 53%, respectively. Nicardipine also significantly reduced the neuron-specific enolase plasma levels by 50%, 42%, and 59% at 24, 48, and 72 hours after the occlusion, respectively. It is concluded that nicardipine may attenuate focal ischemic brain injury by exerting direct neuroprotective and antiedematous effects that do not depend on CBF.

1997 ◽  
Vol 87 (5) ◽  
pp. 731-737 ◽  
Author(s):  
Mamoru Kittaka ◽  
Steven L. Giannotta ◽  
Vladimir Zelman ◽  
Jorge D. Correale ◽  
Christopher M. DeGiorgio ◽  
...  

✓ reversible middle cerebral artery occlusion was performed in rats to determine whether nicardipine, a dihydropyridine voltage-sensitive Ca++ channel (VSCC) antagonist, exerts neuroprotective effects when administered 10 minutes following an ischemic insult, and if it does, whether this is due to its vasodilatory action and effect on cerebral blood flow (CBF) or to direct blockade of Ca++ entry into ischemic brain cells. An increase in the intracellular calcium, [Ca++]i, plays a major role in neuronal injury during cerebral ischemia. Although a large amount of Ca++ enters neurons through the VSCC during ischemia, inconsistent neuroprotective effects have been reported with the antagonists of the VSCC. An intraperitoneal injection of nicardipine (1.2 mg/kg) was administered to rats 10 minutes after the onset of ischemia, and 8, 16, and 24 hours after occlusion. Cortical CBF was determined by laser-Doppler flowmetry. Neurological and neuropathological examinations were performed after 72 hours. Neuron-specific enolase, a specific marker for the incidence of neuronal injury, was measured in plasma. The CBF and other physiological parameters were not affected by nicardipine during occlusion or reperfusion. However, nicardipine treatment significantly improved motor neurological outcome by 29%, and the infarction and edema volume in the pallium as well as the edema volume in the striatum were significantly reduced by 27%, 37%, and 52%, respectively. Nicardipine also reduced the neuron-specific enolase plasma levels by 50%, 42%, and 59% at 24, 48, and 72 hours after the occlusion, respectively. It is concluded that nicardipine may attenuate focal ischemic brain injury by exerting direct neuroprotective and antiedematous effects that do not depend on CBF.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Yaoming Wang ◽  
Mikko Huuskonen ◽  
Axel Montagne ◽  
Berislav Zlokovic

Pericytes play a key role in maintaining the blood-brain barrier (BBB) integrity. BBB disruption occurs during early stages after ischemic stroke. However, the role of pericytes in the pathogenesis of ischemic stroke remains still understudied. 3K3A-APC, a recombinant variant of activated protein C, has shown benefits in preclinical models of ischemic stroke and has favorable safety profile and reduces hemorrhage in Phase 2 study in ischemic stroke patients (RHAPSODY). In the present study, we used PDGFRβ heterozygous knockout (PDGFRβ+/-) mice to investigate the effects of pericyte deficiency on ischemic brain injury using transient proximal middle cerebral artery occlusion (tMCAO). Additionally, we investigated the effects of 3K3A-APC therapy (0.2mg/kg i.v. 4h after stroke) in this model. Compared to controls, pericyte deficiency in PDGFRβ+/- mice resulted in ~35% increase in the infarct and edema volumes, reduction in pericyte coverage from 58% to 25%, and increased IgG and fibrin deposition suggesting accelerated BBB breakdown 24h after stroke. Additionally, PDGFRβ+/- mice showed by 36% more degenerating Fluoro-Jade+ neurons and exhibited accelerated neurobehavioral abnormalities. 3K3A-APC improved neuropathological changes and functional deficits. Our results suggest that pericyte deficiency worsens brain damage and functional outcome after ischemic stroke in mice suggesting that pericytes may play an important role in protecting brain from post-ischemic. We also suggests that 3K3A-APC protects pericyte function in stroked mice which could contribute to its overall neuroprotective effects.


Stroke ◽  
2002 ◽  
Vol 33 (4) ◽  
pp. 1129-1134 ◽  
Author(s):  
Nikolaos Kostulas ◽  
Hu-Lun Li ◽  
Bao-Guo Xiao ◽  
Yu-Min Huang ◽  
Vasilios Kostulas ◽  
...  

2012 ◽  
Vol 33 (2) ◽  
pp. 171-174 ◽  
Author(s):  
Mirko Muzzi ◽  
Francesco Blasi ◽  
Alberto Chiarugi

In light of the relevance of therapeutic hypothermia to stroke treatment, we investigated whether 5′-adenosine monophosphate (AMP)-dependent cooling affords protection from ischemic brain injury. We show that hypothermia by AMP is because of adenosine A1 receptor (A1R) activation and is not invariantly associated with hypotension. Inhibition of ecto-5′-nucleotidase-dependent constitutive degradation of brain extracellular AMP by methylene-ADP (AMPCP) also suffices to prompt A1R-dependent hypothermia without hypotension. Both intraischemic and postischemic hypothermia by AMP or AMPCP reduce infarct volumes and mortality of mice subjected to transient middle cerebral artery occlusion. Data disclose that AMP-dependent hypothermia is of therapeutic relevance to treatment of brain ischemia.


2009 ◽  
Vol 30 (5) ◽  
pp. 943-949 ◽  
Author(s):  
Jae Hwan Kim ◽  
Yong Woo Lee ◽  
Kyung Ah Park ◽  
Won Taek Lee ◽  
Jong Eun Lee

Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of L-arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia.


Stroke ◽  
2019 ◽  
Vol 50 (10) ◽  
pp. 2912-2921 ◽  
Author(s):  
Anil K. Chokkalla ◽  
Suresh L. Mehta ◽  
TaeHee Kim ◽  
Bharath Chelluboina ◽  
Jooyong Kim ◽  
...  

Background and Purpose— Adenosine in many types of RNAs can be converted to m 6 A (N 6 -methyladenosine) which is a highly dynamic epitranscriptomic modification that regulates RNA metabolism and function. Of all organs, the brain shows the highest abundance of m 6 A methylation of RNAs. As recent studies showed that m 6 A modification promotes cell survival after adverse conditions, we currently evaluated the effect of stroke on cerebral m 6 A methylation in mRNAs and lncRNAs. Methods— Adult C57BL/6J mice were subjected to transient middle cerebral artery occlusion. In the peri-infarct cortex, m 6 A levels were measured by dot blot analysis, and transcriptome-wide m 6 A changes were profiled using immunoprecipitated methylated RNAs with microarrays (44 122 mRNAs and 12 496 lncRNAs). Gene ontology analysis was conducted to understand the functional implications of m 6 A changes after stroke. Expression of m 6 A writers, readers, and erasers was also estimated in the ischemic brain. Results— Global m 6 A levels increased significantly at 12 hours and 24 hours of reperfusion compared with sham. While 139 transcripts (122 mRNAs and 17 lncRNAs) were hypermethylated, 8 transcripts (5 mRNAs and 3 lncRNAs) were hypomethylated (>5-fold compared with sham) in the ischemic brain at 12 hours reperfusion. Inflammation, apoptosis, and transcriptional regulation are the major biological processes modulated by the poststroke differentially m 6 A methylated mRNAs. The m 6 A writers were unaltered, but the m 6 A eraser (fat mass and obesity-associated protein) decreased significantly after stroke compared with sham. Conclusions— This is the first study to show that stroke alters the cerebral m 6 A epitranscriptome, which might have functional implications in poststroke pathophysiology. Visual Overview— An online visual overview is available for this article.


Sign in / Sign up

Export Citation Format

Share Document