glycoprotein vi
Recently Published Documents


TOTAL DOCUMENTS

472
(FIVE YEARS 84)

H-INDEX

69
(FIVE YEARS 6)

2021 ◽  
Vol 23 (1) ◽  
pp. 358
Author(s):  
Stefano Navarro ◽  
David Stegner ◽  
Bernhard Nieswandt ◽  
Johan W. M. Heemskerk ◽  
Marijke J. E. Kuijpers

In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.


Author(s):  
Zhaogong Zhi ◽  
Natalie J. Jooss ◽  
Yi Sun ◽  
Martina Colicchia ◽  
Alexandre Slater ◽  
...  
Keyword(s):  

2021 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Jeremy A. Nestele ◽  
Anne-Katrin Rohlfing ◽  
Valerie Dicenta ◽  
Alexander Bild ◽  
Daniela Eißler ◽  
...  

Traditional antithrombotic agents commonly share a therapy-limiting side effect, as they increase the overall systemic bleeding risk. A novel approach for targeted antithrombotic therapy is nanoparticles. In other therapeutic fields, nanoparticles have enabled site-specific delivery with low levels of toxicity and side effects. Here, we paired nanotechnology with an established dimeric glycoprotein VI-Fc (GPVI-Fc) and a GPVI-CD39 fusion protein, thereby combining site-specific delivery and new antithrombotic drugs. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles, NP-BSA, NP-GPVI and NP-GPVI-CD39 were characterized through electron microscopy, atomic force measurements and flow cytometry. Light transmission aggregometry enabled analysis of platelet aggregation. Thrombus formation was observed through flow chamber experiments. NP-GPVI and NP-GPVI-CD39 displayed a characteristic surface coating pattern. Fluorescence properties were identical amongst all samples. NP-GPVI and NP-GPVI-CD39 significantly impaired platelet aggregation. Thrombus formation was significantly impaired by NP-GPVI and was particularly impaired by NP-GPVI-CD39. The receptor-coated nanoparticles NP-GPVI and the bifunctional molecule NP-GPVI-CD39 demonstrated significant inhibition of in vitro thrombus formation. Consequently, the nanoparticle-mediated antithrombotic effect of GPVI-Fc, as well as GPVI-CD39, and an additive impact of CD39 was confirmed. In conclusion, NP-GPVI and NP-GPVI-CD39 may serve as a promising foundation for a novel therapeutic approach regarding targeted antithrombotic therapy.


2021 ◽  
Author(s):  
Maximilian Englert ◽  
Katja Aurbach ◽  
Annika Gerber ◽  
Tobias Heib ◽  
Isabelle C. Becker ◽  
...  

Megakaryocytes are large cells in the bone marrow, which give rise to blood platelets. Platelet biogenesis involves megakaryocyte maturation, the localization of mature cells in close proximity to bone marrow sinusoids and the formation of protrusions, which are shed into the circulation. Rho GTPases play important roles in platelet biogenesis and function. RhoA-deficient mice display macrothrombocytopenia and a striking mislocalization of megakaryocytes into bone marrow sinusoids and a specific defect in G-protein signaling in platelets. However, the role of the closely related protein RhoB in megakaryocytes or platelets remains unknown. In this study, we show that, in contrast to RhoA deficiency, genetic ablation of RhoB in mice results in microthrombocytopenia (decreased platelet count and size). RhoB-deficient platelets displayed mild functional defects predominantly upon induction of the collagen/glycoprotein VI pathway. Megakaryocyte maturation and localization within the bone marrow, as well as actin dynamics were not affected in the absence of RhoB. However, in vitro generated proplatelets revealed pronouncedly impaired microtubule organization. Furthermore, RhoB-deficient platelets and megakaryocytes displayed selective defects in microtubule dynamics/stability, correlating with pronouncedly reduced levels of acetylated α-tubulin. Our findings imply that absence of this tubulin posttranslational modification results in decreased microtubule stability leading to microthrombocytopenia in RhoB-deficient mice. Our data thus points to specifically impaired microtubule - but not actin - dynamics as a general mechanism underlying the manifestation of microthrombocytopenia in vivo. We furthermore demonstrate that RhoA and RhoB have specific, non-redundant functions in the megakaryocyte lineage.


2021 ◽  
Vol 22 (20) ◽  
pp. 11199
Author(s):  
Bibian M. E. Tullemans ◽  
Alicia Veninga ◽  
Delia I. Fernandez ◽  
Maureen J. B. Aarts ◽  
Johannes A. Eble ◽  
...  

Current antiplatelet drugs for the treatment of arterial thrombosis often coincide with increased bleeding risk. Several tyrosine kinase inhibitors (TKIs) for cancer treatment inhibit platelet function, with minor reported bleeding symptoms. The aim of this study was to compare the antiplatelet properties of eight TKIs to explore their possible repurposing as antiplatelet drugs. Samples of whole blood, platelet-rich plasma (PRP), or isolated platelets from healthy donors were treated with TKI or the vehicle. Measurements of platelet aggregation, activation, intracellular calcium mobilization, and whole-blood thrombus formation under flow were performed. Dasatinib and sunitinib dose-dependently reduced collagen-induced aggregation in PRP and washed platelets; pazopanib, cabozantinib, and vatalanib inhibited this response in washed platelets only; and fostamatinib, axitinib, and lapatinib showed no/limited effects. Fostamatinib reduced thrombus formation by approximately 50% on collagen and other substrates. Pazopanib, sunitinib, dasatinib, axitinib, and vatalanib mildly reduced thrombus formation on collagen by 10–50%. Intracellular calcium responses in isolated platelets were inhibited by dasatinib (>90%), fostamatinib (57%), sunitinib (77%), and pazopanib (82%). Upon glycoprotein-VI receptor stimulation, fostamatinib, cabozantinib, and vatalanib decreased highly activated platelet populations by approximately 15%, while increasing resting populations by 39%. In conclusion, the TKIs with the highest affinities for platelet-expressed molecular targets most strongly inhibited platelet functions. Dasatinib, fostamatinib, sunitinib, and pazopanib interfered in early collagen receptor-induced molecular-signaling compared with cabozantinib and vatalanib. Fostamatinib, sunitinib, pazopanib, and vatalanib may be promising for future evaluation as antiplatelet drugs.


Author(s):  
Fahd Kuriri ◽  
Genia Burchall ◽  
Fehaid Alanazi ◽  
Juliana Antonipillai ◽  
Gasim Dobie ◽  
...  

The immunoglobulin (Ig)–immunoreceptor tyrosine–based inhibitory motif (ITIM) bearing receptors, PECAM-1 and CEACAM1 have been shown net negative regulators of platelet-collagen interactions and hemi-ITAM signalling pathways. In this study, a double knockout (DKO) mouse was developed with deleted PECAM-1 and CEACAM1 to study their combined contribution in platelet activation by glycoprotein VI, C-type lectin-like receptor 2 (CLEC-2), protease activated receptor PAR-4, ADP purinergic receptors and thromboxane receptor TP A2 pathways. Additionally, their collective contribution was examined in thrombus formation under high shear and microvascular thrombosis using in vivo models. DKO platelets responded normally to ADP purinergic receptors and TP A2 pathway. However, DKO platelets released significantly higher amounts of P-selectin compared to hyper-responsive Pecam-1-/- or Ceacam1-/- versus wild-type (WT) upon stimulation with collagen related peptide or rhodocytin. Contrastingly, DKO platelets released increased amounts of P-selectin upon stimulation with PAR-4 agonist peptide or thrombin but not Pecam-1-/-, Ceacam1-/- or WT platelets. Blockade of phospholipase C (PLC) or Rho A kinase revealed that DKO platelets enhanced alpha granule release via PAR-4/Gαq/PLC signalling without crosstalk with Src/Syk or G12/13 signalling pathways. This DKO model showed a significant increase in thrombus formation compared to the hyper-responsive Ceacam1-/- or Pecam-1-/- versus WT phenotype. DKO platelets have similar glycoprotein surface expression compared to Pecam-1-/-, Ceacam1-/- and WT platelets. PECAM-1 and CEACAM1 work in concert to negatively regulate hemiITAM signalling, platelet-collagen interactions and PAR-4 Gαq protein coupled signalling pathways. Both PECAM-1 and CEACAM1 are required for negative regulation of platelet activation and microvascular thrombosis in vivo.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2616
Author(s):  
Kahdr A. Alatawi ◽  
Divyashree Ravishankar ◽  
Pabitra H. Patra ◽  
Alexander P. Bye ◽  
Alexander R. Stainer ◽  
...  

1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbβ3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.


Author(s):  
Kate Downes ◽  
Xuefei Zhao ◽  
Nicholas S Gleadall ◽  
Harriet McKinney ◽  
Carly Kempster ◽  
...  

The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWAS) of quantitative measures of platelet function have thus far identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWAS of pathway specific functional responses to agonism by ADP, a glycoprotein VI-specific collagen mimetic and thrombin receptor-agonist peptides, each specific to one of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1,562 individuals. We identified an association (P=2.75x10-40) between a common intronic variant, rs10886430 in the G protein-coupled receptor kinase 5 gene (GRK5), and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and greater sensitivity of platelets to activate through PAR-1. We show that thrombin mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homologue Grk5 enhances thrombin induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G-allele of rs10886430 associates with greater risks of cardiovascular diseases. In summary, by combining the results of pathway specific GWAS and eQTL studies in humans with the results of platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.


2021 ◽  
Vol 22 (18) ◽  
pp. 9915
Author(s):  
Anna Vogelsang ◽  
Susann Eichler ◽  
Niklas Huntemann ◽  
Lars Masanneck ◽  
Hannes Böhnlein ◽  
...  

Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.


Author(s):  
Gina Perrella ◽  
Magdolna Nagy ◽  
Steve P. Watson ◽  
Johan W.M. Heemskerk

The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.


Sign in / Sign up

Export Citation Format

Share Document