Vasodilator system for the face

1975 ◽  
Vol 42 (6) ◽  
pp. 696-703 ◽  
Author(s):  
Guillermo Gonzalez ◽  
Burton M. Onofrio ◽  
Frederick W. L. Kerr

✓ The authors describe investigations in cats to delineate a vasodilator system to the face, which they undertook after a previous study showed that radiofrequency coagulation of the trigeminal ganglion produced a pronounced flush in the skin of the corresponding division. Results demonstrate a vasodilator system emerging from the brain stem with the facial nerve which, by way of the greater superficial petrosal nerve, reaches the trigeminal ganglion. There the fibers are distributed to each of the divisions of the fifth nerve; in addition, a moderate number of vasodilator fibers also appear to leave the brain stem directly with the trigeminal nerve. Vasodilator effects were elicited by stereotaxic stimulation of the facial and trigeminal nuclei in the brain stem. There is, therefore, a dual vasomotor control of the facial cutaneous vascular bed; the classical sympathetic vasoconstrictor system of the face is complemented by a vasodilator system capable of producing changes of equal but opposite amplitude in vessel caliber.

1986 ◽  
Vol 65 (6) ◽  
pp. 825-833 ◽  
Author(s):  
Charles J. Hodge ◽  
A. Vania Apkarian ◽  
Richard T. Stevens

✓ The Kölliker-Fuse nucleus (KF) in the dorsolateral pons has been shown to be the major source of catecholamine innervation of the spinal cord. This has important implications in terms of pain control mechanisms, since catecholamine-mediated mechanisms are essential for the expression of opiate and other varieties of antinociception. This study examines the effects of KF stimulation on responses of dorsal-horn cells to innocuous and noxious cutaneous stimuli in anesthetized cats. Stimulation of the KF potently inhibits the responses of dorsal-horn cells to both noxious and innocuous stimuli. The threshold for the inhibitory effect is significantly lower for responses to noxious stimuli as opposed to innocuous stimuli. The inhibitory effect is specific to the stimulus site, as evidenced by a marked decrease in the effect following small changes in the position of the stimulating electrode in the brain stem. The latency of the effects indicates a bulbospinal conduction velocity of 4 to 5 m/sec, which is much slower than usual reticulospinal effects and is consistent with a catecholamine-mediated system. The dependence of KF-spinal inhibition on intact biogenic amines was tested by depleting the animals of these amines with reserpine pretreatment. Depletion of biogenic amines resulted in a significant decrease in the KF spinal inhibitory effects, suggesting their dependence on intact noradrenergic stores. The results of these studies are consistent with the idea that the KF-spinal system plays an important noradrenergic-dependent role in the brain-stem modulation of spinal processing of noxious, potentially painful stimuli.


1977 ◽  
Vol 47 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Hiroshi Matsumura ◽  
Yasumasa Makita ◽  
Kuniyuki Someda ◽  
Akinori Kondo

✓ We have operated on 12 of 14 cases of arteriovenous malformation (AVM) in the posterior fossa since 1968, with one death. The lesions were in the cerebellum in 10 cases (three anteromedial, one central, three lateral, and three posteromedial), and in the cerebellopontine angle in two; in two cases the lesions were directly related to the brain stem. The AVM's in the anterior part of the cerebellum were operated on through a transtentorial occipital approach.


1989 ◽  
pp. 235-237
Author(s):  
Y. Kogure ◽  
H. Fujii ◽  
S. Higashi ◽  
M. Hashimoto ◽  
K. Tokuda ◽  
...  

1989 ◽  
Vol 257 (1) ◽  
pp. G24-G29
Author(s):  
W. D. Barber ◽  
C. S. Yuan

The brain stem neuronal responses to electrical stimulation of gastric branches of the ventral vagal trunk serving the proximal stomach were localized and evaluated in anesthetized cats. The responses were equally distributed bilaterally in the region of nucleus solitarius in the caudal brain stem. The mean latency of the response was 289 +/- 46 (SD) ms, which translated into a conduction velocity of less than 1 m/s based on the distance between the stimulating and recording electrodes. The responses consisted of single and multiple spikes that showed slight variability in the latency, indicating orthodromic activation via a synapse in approximately 98% of the responses recorded. Forty two percent of the units tested showed evidence of convergence of input from vagal afferent fibers in different branches of the ventral vagal trunk that served the proximal stomach. The resultant activity pattern of the unitary response appeared to be the product of 1) the gastric sensory input or modality conveyed by the afferent source and 2) the time of arrival and diversity of modalities served by other gastric afferents impinging on the unit. This provides a mechanism capable of responding on the basis of specific sensory modalities that dynamically reflect ongoing events monitored and conveyed by other gastric afferents in the region.


1999 ◽  
Vol 82 (2) ◽  
pp. 841-854 ◽  
Author(s):  
Gerard L. Gebber ◽  
Sheng Zhong ◽  
Craig Lewis ◽  
Susan M. Barman

Time and frequency domain analyses were used to examine the changes in the relationships between the discharges of the inferior cardiac (CN) and vertebral (VN) postganglionic sympathetic nerves produced by electrical activation of the midbrain periaqueductal gray (PAG) in urethan-anesthetized, baroreceptor-denervated cats. CN-VN coherence and phase angle in the 10-Hz band served as measures of the coupling of the central oscillators controlling these nerves. The 10-Hz rhythm in CN and VN discharges was entrained 1:1 to electrical stimuli applied to the PAG at frequencies between 7 and 12 Hz. CN 10-Hz discharges were increased, and VN 10-Hz discharges were decreased when the frequency of PAG stimulation was equal to or above that of the free-running rhythm. In contrast, stimulation of the same PAG sites at lower frequencies increased, albeit disproportionately, the 10-Hz discharges of both nerves. In either case, PAG stimulation significantly increased the phase angle between the two signals (VN 10-Hz activity lagged CN activity); coherence values relating their discharges were little affected. However, the increase in phase angle was significantly more pronounced when the 10-Hz discharges of the two nerves were reciprocally affected. Importantly, partialization of the phase spectrum using the PAG stimuli did not reverse the change in CN-VN phase angle. This observation suggests that the increase in the CN-VN phase angle reflected changes in the phase relations between coupled oscillators in the brain stem rather than the difference in conduction times to the two nerves from the site of PAG stimulation. In contrast to the effects elicited by PAG stimulation, stimulation of the medullary lateral tegmental field induced uniform increases in the 10-Hz discharges of the two nerves and no change in the CN-VN phase angle. Our results demonstrate that changes in the phase relations among coupled brain stem 10-Hz oscillators are accompanied by differential patterns of spinal sympathetic outflow. The reciprocal changes in CN and VN discharges produced by PAG stimulation are consistent with the pattern of spinal sympathetic outflow expected during the defense reaction.


Sign in / Sign up

Export Citation Format

Share Document