Intracranial pressure changes induced by sodium nitroprusside in patients with intracranial mass lesions

1978 ◽  
Vol 48 (3) ◽  
pp. 329-331 ◽  
Author(s):  
James E. Cottrell ◽  
Katie Patel ◽  
Herman Turndorf ◽  
Joseph Ransohoff

✓ Because of the ability of sodium nitroprusside (SNP) to dilate cerebral blood vessels, intracranial pressure (ICP) should increase with its use. In patients with vascular intracranial tumors following SNP (0.01%) infusion, ICP increased from 14.58 ± 1.85 to 27.61 ± 3.33 torr (p > 0.0005) and cerebral perfusion pressure decreased from 89.32 ± 3.5 to 43.23 ± 4.60 torr (p < 0.0005) when the mean arterial pressure had reduced by 33%. These results suggest that SNP not be used in patients with raised ICP unless previous measures have been taken to improve intracranial compliance.

1988 ◽  
Vol 69 (2) ◽  
pp. 213-215 ◽  
Author(s):  
Akio Tateishi ◽  
Takanobu Sano ◽  
Hiroshi Takeshita ◽  
Toshihisa Suzuki ◽  
Hisao Tokuno

✓ The effects of nifedipine, 20 mg administered via a nasogastric tube, on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) were examined. Nifedipine was administered to treat arterial hypertension (> 180 mm Hg, systolic). Ten measurements were made in eight patients with cerebrovascular disease or head trauma. The mean arterial blood pressure (MABP) and ICP were measured before and for 30 minutes after the administration of nifedipine. The MABP gradually decreased and reached its lowest value at approximately 10 minutes after initiation of nifedipine administration, and thereafter remained unchanged. The MABP decreased significantly from 128 ± 8 (mean ± standard deviation) to 109 ± 7 mm Hg, and the CPP decreased from 105 ± 11 to 84 ± 10 mm Hg. The ICP increased by 1 to 10 mm Hg in eight of 10 measurements, and the mean change of ICP from 19 ± 7 to 22 ± 6 mm Hg was statistically significant. These changes were not accompanied by alterations in neurological signs. The results suggest that enteral nifedipine produces a small but statistically significant increase in ICP. Accordingly, neurological signs must be closely observed to detect deterioration, which can be caused by an increase in ICP and/or a decrease in CPP.


2001 ◽  
Vol 95 (4) ◽  
pp. 569-572 ◽  
Author(s):  
Bon H. Verweij ◽  
J. Paul Muizelaar ◽  
Federico C. Vinas

Object. The poor prognosis for traumatic acute subdural hematoma (ASDH) might be due to underlying primary brain damage, ischemia, or both. Ischemia in ASDH is likely caused by increased intracranial pressure (ICP) leading to decreased cerebral perfusion pressure (CPP), but the degree to which these phenomena occur is unknown. The authors report data obtained before and during removal of ASDH in five cases. Methods. Five patients who underwent emergency evacuation of ASDH were monitored. In all patients, without delaying treatment, a separate surgical team (including the senior author) placed an ICP monitor and a jugular bulb catheter, and in two patients a laser Doppler probe was placed. The ICP prior to removing the bone flap in the five patients was 85, 85, 50, 59, and greater than 40 mm Hg, resulting in CPPs of 25, 3, 25, 56, and less than 50 mm Hg, respectively. Removing the bone flap as well as opening the dura and removing the blood clot produced a significant decrease in ICP and an increase in CPP. Jugular venous oxygen saturation (SjvO2) increased in four patients and decreased in the other during removal of the hematoma. Laser Doppler flow also increased, to 217% and 211% compared with preevacuation flow. Conclusions. Intracranial pressure is higher than previously suspected and CPP is very low in patients with ASDH. Removal of the bone flap yielded a significant reduction in ICP, which was further decreased by opening the dura and evacuating the hematoma. The SjvO2 as well as laser Doppler flow increased in all patients but one immediately after removal of the hematoma.


1998 ◽  
Vol 89 (3) ◽  
pp. 448-453 ◽  
Author(s):  
Ingunn R. Rise ◽  
Ole J. Kirkeby

Object. The authors tested the hypothesis in a porcine model that inhibition of nitric oxide synthesis during reduced cerebral perfusion pressure (CPP) affected the relative cerebral blood flow (CBF) and the cerebrovascular resistance. Methods. The CPP was reduced by inducing high cerebrospinal fluid pressure and hemorrhagic hypotension. With continuous blood and intracranial pressure monitoring, relative CPP was estimated using the laser Doppler flowmetry technique in nine pigs that received 40 mg/kg nitro-l-arginine methyl ester (l-NAME) and in nine control animals. The l-NAME caused a decrease in relative CBF (p < 0.01) and increases in cerebrovascular resistance (p < 0.01), blood pressure (p < 0.05), and CPP (p < 0.001). During high intracranial pressure there were no significant differences between the treated animals and the controls. After hemorrhage, there was no significant difference between the groups initially, but 30 minutes later the cerebrovascular resistance was decreased in the control group and increased in the l-NAME group relative to baseline (p < 0.05). Combined hemorrhage and high intracranial pressure increased the difference between the two groups with regard to cerebrovascular resistance (p < 0.05). Conclusions. These results suggest that nitric oxide synthesis inhibition affects the autoregulatory response of the cerebral circulation after cardiovascular compensation has taken place. Nitric oxide synthesis inhibition enhanced the undesirable effects of high intracranial pressure during hypovolemia.


2001 ◽  
Vol 94 (3) ◽  
pp. 412-416 ◽  
Author(s):  
Iain Robert Chambers ◽  
Lynne Treadwell ◽  
A. David Mendelow

Object. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are frequently monitored in severely head injured patients. To establish which one (ICP or CPP) is more predictive of outcome and to examine whether there are significant threshold levels in the determination of outcome, receiver—operating characteristic (ROC) curves were used to analyze data in a large series of head-injured patients. Methods. Data were obtained from a total of 291 severely head injured patients (207 adults and 84 children). Outcome was categorized as either independent (good recovery or moderate disability) or poor (severely disabled, vegetative, or dead) by using the Glasgow Outcome Scale; patients were also grouped according to the Marshall computerized tomography scan classification. Conclusions. The maximum value of a 2-minute rolling average of ICP readings (defined as ICPmax) and the minimum value of the CPP readings (CPPmin) were then used to calculate the sensitivity and specificity of the ROC curves over a range of values. Using ROC curves, a threshold value for CPPmin of 55 mm Hg and for ICPmax of 35 mm Hg appear to be the best predictors in adults. For children the levels appear to be 43 to 45 mm Hg for CPPmin and 35 mm Hg for ICPmax. Higher levels of CPPmin seem important in adults with mass lesions. These CPP thresholds (45 mm Hg for children and 55 mm Hg for adults) are lower than previously predicted and may be clinically important, especially in children, in whom a lower blood pressure level is normal. Also, CPP management at higher levels may be more important in adults with mass lesions. A larger observational series would improve the accuracy of these predictions.


1986 ◽  
Vol 65 (5) ◽  
pp. 636-641 ◽  
Author(s):  
Michael J. Rosner ◽  
Irene B. Coley

✓ Previous investigations have suggested that intracranial pressure waves may be induced by reduction of cerebral perfusion pressure (CPP). Since pressure waves were noted to be more common in patients with their head elevated at a standard 20° to 30°, CPP was studied as a function of head position and its effect upon intracranial pressure (ICP). In 18 patients with varying degrees of intracranial hypertension, systemic arterial blood pressure (SABP) was monitored at the level of both the head and the heart. Intracranial pressure and central venous pressure were assessed at every 10° of head elevation from 0° to 50°. For every 10° of head elevation, the average ICP decreased by 1 mm Hg associated with a reduction of 2 to 3 mm Hg CPP. The CPP was not beneficially affected by any degree of head elevation. Maximal CPP (73 ± 3.4 mm Hg (mean ± standard error of the mean)) always occurred with the head in a horizontal position. Cerebrospinal fluid pressure waves occurred in four of the 18 patients studied as a function of reduced CPP caused by head elevation alone. Thus, elevation of the head of the bed was associated with the development of CPP decrements in all cases, and it precipitated pressure waves in some. In 15 of the 18 patients, CPP was maintained by spontaneous 10- to 20-mm Hg increases in SABP, and pressure waves did not occur if CPP was maintained at 70 to 75 mm Hg or above. It is concluded that 0° head elevation maximizes CPP and reduces the severity and frequency of pressure-wave occurrence. If the head of the bed is to be elevated, then adequate hydration and avoidance of pharmacological agents that reduce SABP or prevent its rise are required to maximize CPP.


1986 ◽  
Vol 64 (3) ◽  
pp. 414-419 ◽  
Author(s):  
Ross Bullock ◽  
James R. van Dellen ◽  
Derek Campbell ◽  
Ian Osborn ◽  
S. Gustav Reinach

✓ Of 243 patients who underwent intracranial pressure (ICP) monitoring after severe head injury, 42 (17%) were found to have severe persistently raised ICP, in spite of hyperventilation, mannitol, and surgical decompression. Althesin was infused to reduce ICP in these patients. This agent was shown to be effective and safe in reducing ICP, and a significant improvement in cerebral perfusion pressure was demonstrated. In this respect, Althesin may be more effective than barbiturates. However, no improvement in patient outcome was demonstrated in this series.


1998 ◽  
Vol 89 (6) ◽  
pp. 971-982 ◽  
Author(s):  
Paul Vespa ◽  
Mayumi Prins ◽  
Elizabeth Ronne-Engstrom ◽  
Michael Caron ◽  
Ehud Shalmon ◽  
...  

Object. To determine the extent and duration of change in extracellular glutamate levels after human traumatic brain injury (TBI), 17 severely brain injured adults underwent implantation of a cerebral microdialysis probe and systematic sampling was conducted for 1 to 9 days postinjury. Methods. A total of 772 hourly microdialysis samples were obtained in 17 patients (median Glasgow Coma Scale score 5 ± 2.5, mean age 39.4 ± 20.4 years). The mean (± standard deviation) glutamate levels in the dialysate were evaluated for 9 days, during which the mean peak concentration reached 25.4 ± 13.7 (µM on postinjury Day 3. In each patient transient elevations in glutamate were seen each day. However, these elevations were most commonly seen on Day 3. In all patients there was a mean of 4.5 ± 2.5 transient elevations in glutamate lasting a mean duration of 4.4 ± 4.9 hours. These increases were seen in conjunction with seizure activity. However, in many seizure-free patients the increase in extracellular glutamate occurred when cerebral perfusion pressure was less than 70 mm Hg (p < 0.001). Given the potential injury-induced uncoupling of cerebral blood flow and metabolism after TBI, these increases in extracellular glutamate may reflect a degree of enhanced cellular crisis, which in severe head injury in humans appears to last up to 9 days. Conclusions. Extracellular neurochemical measurements of excitatory amino acids may provide a marker for secondary insults that can compound human TBI.


1986 ◽  
Vol 65 (5) ◽  
pp. 697-703 ◽  
Author(s):  
Fredrik P. Nath ◽  
Alistair Jenkins ◽  
A. David Mendelow ◽  
David I. Graham ◽  
Graham M. Teasdale

✓ A model of experimental intracerebral hemorrhage is described in which carefully controlled volumes of autologous blood were injected at arterial pressure into the caudate nucleus of the rat. A comparison of intracranial pressure changes and local cerebral blood flow (CBF) was made between three groups of rats, each receiving different injection volumes, and sham-operated control rats by monitoring intraventricular pressure and by obtaining quantitative autoradiographic measurements of CBF within 1 minute of the experimental hemorrhage. Cerebral blood flow was reduced both around the hematoma and in the surrounding brain. This change was strongly volume-dependent and was not accompanied by significant alterations in cerebral perfusion pressure. This finding suggests that the degree of ischemia at the time of an intracerebral bleed depends on the size of the lesion, and implicates local squeezing of the microcirculation by the hematoma, rather than a generalized alteration in perfusion pressure, as the cause of ischemia.


Curationis ◽  
1992 ◽  
Vol 15 (1) ◽  
Author(s):  
M. Hugo

Nursing care activities have been proved to cause increases in intracranial pressure (ICP) which could be detrimental to the patient’s health. Because positioning is one of the activities that causes the greatest pressure changes it was evaluated in this study. Cumulative increases also occur when nursing care activities are carried out in quick succession. The analysis of the data and literature suggest that the backrest position with the head of the bed elevated 30 to 45 degrees is the best position for a patient with increased ICP. If further research should prove that this position has a negative influence on the cerebral perfusion pressure, these recommendations will have to be revised.


Sign in / Sign up

Export Citation Format

Share Document