Thermographic presentation of cutaneous sensory and vasomotor activity in the injured peripheral nerve

1985 ◽  
Vol 62 (5) ◽  
pp. 711-715 ◽  
Author(s):  
Kathleen L. Brelsford ◽  
Sumio Uematsu

✓ Impaired function of cutaneous segments of monkey peripheral nerves experimentally blocked by lidocaine anesthesia was clearly visualized by means of elevated temperature measurements obtained on computerized color telethermography. Mean temperature elevations in the segments of anesthetized primate nerves were 2.40°C at the ulnar segment 17 minutes after nerve block, and 1.20°C at the peroneal nerve at 20 minutes. The vasomotor activity of specific nerves, recorded after local anesthesia and displayed by color telethermographic imaging, corresponded to the distribution of sensory segments identified by more cumbersome means. Telethermography is therefore shown to be a useful tool, both qualitatively and quantitatively, in mapping cutaneous distribution of peripheral nerves and for evaluation of peripheral nerve injuries.

2016 ◽  
Vol 51 (1) ◽  
pp. 63-69
Author(s):  
Samuel Ribak ◽  
Paulo Roberto Ferreira da Silva Filho ◽  
Alexandre Tietzmann ◽  
Helton Hiroshi Hirata ◽  
Carlos Augusto de Mattos ◽  
...  

2014 ◽  
Vol 5 (3) ◽  
pp. 64-66
Author(s):  
Marina Nikolayevna Romanova ◽  
Nikolay Grigoryevich Zhila ◽  
Yelena Vladimirovna Sinelnikova

Ultrasound imaging of peripheral nerves can accurately determine the level of damage, and also to assess the extent of damage to the structure of the nerve fiber. Early detection of the type of damage can significantly improve patient outcomes.


2003 ◽  
Vol 50 (1) ◽  
pp. 7-14
Author(s):  
Miroslav Samardzic

Microsurgical procedures on injured peripheral nerves have been performed in Institute of neurosurgery in Belgrade for twenty-five years. During this period 1284 procedures, including 1029 on peripheral nerves, and 255 on brachial plexus were done. In this paper we analyze surgical results of individual procedures and the other factors influencing the outcome. Despite advances caused by introduction of the operating microscope, there are numerous controversies mainly in microsurgical technique that are discussed.


2003 ◽  
Vol 99 (3) ◽  
pp. 555-565 ◽  
Author(s):  
Rajiv Midha ◽  
Catherine A. Munro ◽  
Paul D. Dalton ◽  
Charles H. Tator ◽  
Molly S. Shoichet

Object. The authors' long-term goal is repair of peripheral nerve injuries by using synthetic nerve guidance devices that improve both regeneration and functional outcome relative to an autograft. They report the in vitro processing and in vivo application of synthetic hydrogel tubes that are filled with collagen gel impregnated with growth factors. Methods. Poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) (PHEMA-MMA) porous 12-mm-long tubes with an inner diameter of 1.3 mm and an outer diameter of 1.8 mm were used to repair surgically created 10-mm gaps in the rat sciatic nerve. The inner lumen of the tubes was filled with collagen matrix alone or matrix supplemented with either neurotropin-3 at 1 µg/ml, brain-derived neurotrophic factor at 1 µg/ml, or acidic fibroblast growth factor (FGF-1) at 1 or 10 µg/ml. Nerve regeneration through the growth factor—enhanced tubes was assessed at 8 weeks after repair by histomorphometric analysis at the midgraft level and in the nerve distal to the tube repair. The tubes were biostable and biocompatible, and supported nerve regeneration in more than 90% of cases. Nerve regeneration was improved in tubes in which growth factors were added, compared with empty tubes and those containing collagen gel alone (negative controls). Tubes filled with 10 µg/ml of FGF-1 dispersed in collagen demonstrated regeneration comparable to autografts (positive controls) and showed significantly better regeneration than the other groups. Conclusions. The PHEMA-MMA tubes augmented with FGF-1 in their lumens appear to be a promising alternative to autografts for repair of nerve injuries. Studies are in progress to assess the long-term biocompatibility of these implants and to enhance regeneration further.


2018 ◽  
Vol 20 (1) ◽  
pp. 203-208
Author(s):  
A Yu Nisht ◽  
N F Fomin ◽  
V S Chirsky

An increasing number of injuries with damage of peripheral nerves, including a substantial number of injuries with extensive defects of large nerve trunks, requires improvement in approach to surgical treatment of patients. High-energy impact injuries in peacetime and wartime often lead to persistent violations of musculoskeletal apparatus, a significant part of which is due to injuries of peripheral nerves. During peacetime, various types of peripheral nerve injuries occur in 2-6% of trauma patients. In today’s armed conflicts, various types of peripheral nerve injuries occur in nearly 80% of neurosurgical patients and are mostly of combined injury. Improvements in surgical methods of recovery of lost innervation due to an injury are directly associated with the development of fundamental understanding of the nature of occurring degenerative and regenerative processes in damaged nerve fiber. Nerve suture is only the creation of appropriate conditions that contribute to regeneration of nerve fibers and recovery of lost functions. When extensive defects of nerve trunks exist, connection of distal part damaged nerve with side surface of the intact nerve is the alternative to traditional replacement of extensive defects with nerve grafts. Positive outcomes of such interventions that were seen during tests on laboratory animals led to trials of this method on patients and resulted in a number of positive outcomes as well. Despite the fact that the question of morphological substantiation of reinnervation processes of the distal portion of a damaged nerve is the cause of heated disputes among scientists, some surgeons make attempts to define a set of specific conditions needed to justify the use of end-to-side neurorrhaphy.


1998 ◽  
Vol 89 (4) ◽  
pp. 610-615 ◽  
Author(s):  
Russell R. Lonser ◽  
Robert J. Weil ◽  
Paul F. Morrison ◽  
Lance S. Governale ◽  
Edward H. Oldfield

Object. Although many macromolecules have treatment potential for peripheral nerve disease, clinical use of these agents has been restricted because of limitations of delivery including systemic toxicity, heterogeneous dispersion, and inadequate distribution. In an effort to overcome these obstacles, the authors examined the use of convection to deliver and distribute macromolecules into peripheral nerves. Methods. For convective delivery, the authors used a gas-tight, noncompliant system that provided continuous flow through a small silica cannula (inner diameter 100 µm, outer diameter 170 µm) inserted into a peripheral nerve. Increases in the volume of infusion (Vi) (10, 20, 30, 40, and 80 µl) of 14C-labeled (nine nerves) or gadolinium-labeled (two nerves) albumin were infused unilaterally or bilaterally into the tibial nerves of six primates (Macaca mulatta) at 0.5 µl/minute. The volume of distribution (Vd), percentage recovery, and delivery homogeneity were determined using quantitative autoradiography, an imaging program developed by the National Institutes of Health, magnetic resonance (MR) imaging, scintillation counting, and kurtosis (K) analysis. One animal that was infused bilaterally with gadolinium-bound albumin (40 µl to each nerve) underwent MR imaging and was observed for 16 weeks after infusion. The Vd increased with the Vi in a logarithmic fashion. The mean Vd/Vi ratio over all Vi was 3.7 ± 0.8 (mean ± standard deviation). The concentration across the perfused region was homogeneous (K = −1.07). The infusate, which was limited circumferentially by the epineurium, followed the parallel arrangement of axonal fibers and filled long segments of nerve (up to 6.8 cm). Recovery of radioactivity was 75.8 ± 9%. No neurological deficits arose from infusion. Conclusions. Convective delivery of macromolecules to peripheral nerves is safe and reliable. It overcomes obstacles associated with current delivery methods and allows selective regional delivery of putative therapeutic agents to long sections of nerve. This technique should permit the development of new treatments for numerous types of peripheral nerve lesions.


JMS SKIMS ◽  
2010 ◽  
Vol 13 (1) ◽  
pp. 7-10
Author(s):  
Owais Habib ◽  
Adil Hafeez ◽  
Abdul Rashid Bhat

Background: Peripheral neural trauma is a common injury seen both in civilian practice and warfare.Majority of such neural damage is caused by glass cut. The agent causes extnesive damage to te underlying structures from an apparantly looking small incised wound.Material and Method: We explored the wonds of 75 patients under anaesthesia to look for injury to the underlying peripheral nerves. Upon identifying the injured nerve, primary repair using epineural microsurgical technique was carried out using very fine sutures and micro- instruments. The patients were followed sequentailly in the post operative period.Conclusion:When such a protocol was adhered to, the results of nerve repair were excellent in majority of the patients. J Med Sci 2010;13(1):7-10


2003 ◽  
Vol 50 (1) ◽  
pp. 47-54
Author(s):  
Danica Grujicic ◽  
Miroslav Samardzic ◽  
Lukas Rasulic ◽  
Dragan Savic ◽  
Irena Cvrkota ◽  
...  

Autologous nerve grafting is the most commnly used operative technique in delayed primary, or secondary nerve repair after the peripheral nerve injuries. The aim of this procedure is to overcome nerve gaps that results from the injury itself, fibrous and elastic retraction forces, resection of the damaged parts of the nerve, position of the articulations and mobilisation of the nerve. In this study we analyse the results of operated patients with transections and lacerations of the peripheral nerves from 1979 to 2000 year. Gunshot injuries have not been analyzed in this study. The majority of the injuries were in the upper extremity (more than 87% of cases). Donor for nerve transplantation had usually been sural nerve, and only occasionally medial cutaneous nerve of the forearm was used. In about 93% of cases we used interfascicular nerve grafting, and cable nerve grafting was performed in the rest of them. Most of the grafts were 1 do 5 cm long (70% of cases). Functional recovery was achieved in more than 86% of cases, which is similar to the results of the other authors. Follow up period was minimum 2 years. We analyzed the influence of different factors on nerve recovery after the operation: patient?s age, location and the extent (total or partial) of nerve injury, the length of the nerve graft, type of the nerve, timing of surgery, presence of multiple nerve injuries and associated osseal and soft tissue injuries of the upper and lower extremities.


Sign in / Sign up

Export Citation Format

Share Document