Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate

2002 ◽  
Vol 96 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Allan D. O. Levi ◽  
Hector Dancausse ◽  
Xiuming Li ◽  
Suzanne Duncan ◽  
Laura Horkey ◽  
...  

Object. Partial restoration of hindlimb function in adult rats following spinal cord injury (SCI) has been demonstrated using a variety of transplantation techniques. The purpose of the present study was twofold: 1) to determine whether strategies designed to promote regeneration in the rat can yield similar results in the primate; and 2) to establish whether central nervous system (CNS) regeneration will influence voluntary grasping and locomotor function in the nonhuman primate. Methods. Ten cynomologus monkeys underwent T-11 laminectomy and resection of a 1-cm length of hemispinal cord. Five monkeys received six intercostal nerve autografts and fibrin glue containing acidic fibroblast growth factor (2.1 µg/ml) whereas controls underwent the identical laminectomy procedure but did not receive the nerve grafts. At 4 months postgrafting, the spinal cord—graft site was sectioned and immunostained for peripheral myelin proteins, biotinylated dextran amine, and tyrosine hydroxylase, whereas the midpoint of the graft was analyzed histologically for the total number of myelinated axons within and around the grafts. The animals underwent pre- and postoperative testing for changes in voluntary hindlimb grasping and gait. Conclusions. 1) A reproducible model of SCI in the primate was developed. 2) Spontaneous recovery of the ipsilateral hindlimb function occurred in both graft- and nongraft—treated monkeys over time without evidence of recovering the ability for voluntary tasks. 3) Regeneration of the CNS from proximal spinal axons into the peripheral nerve grafts was observed; however, the grafts did not promote regeneration beyond the lesion site. 4) The grafts significantly enhanced (p < 0.0001) the regeneration of myelinated axons into the region of the hemisected spinal cord compared with the nongrafted animals.

2017 ◽  
Vol 34 (10) ◽  
pp. 1909-1914 ◽  
Author(s):  
Catherine C. Theisen ◽  
Rahul Sachdeva ◽  
Scarlett Austin ◽  
Danielle Kulich ◽  
Victoria Kranz ◽  
...  

2010 ◽  
Vol 225 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Marie-Pascale Côté ◽  
Amgad Hanna ◽  
Michel A. Lemay ◽  
Karen Ollivier-Lanvin ◽  
Lauren Santi ◽  
...  

1994 ◽  
Vol 81 (1) ◽  
pp. 107-114 ◽  
Author(s):  
Jayme Augusto Bertelli ◽  
Jean Claude Mira

✓ Over the years, peripheral nerve grafts, a favorable environment for the support of axonal elongation, have attracted interest as a possible means of promoting spinal cord repair. In the experiments described here, rats underwent an avulsion injury of the brachial plexus, and the musculocutaneous nerve was repaired by direct insertion of peripheral nerve grafts into the spinal cord. After varying postoperative periods, the rats were submitted to a series of behavioral tests to evaluate forelimb and hindlimb function. They also underwent retrograde double-labeling studies. Nerve grafts were harvested and processed for electronic microscopy. The biceps muscle was removed and weighed and its histology studied. After surgery, central axons effectively regenerated about 65 mm along the peripheral nerve grafts, restoring normal active elbow flexion. Forelimb movements were well coordinated in both voluntary and automatic activities. Clinical investigations showed that there were no side effects in the ipsilateral forepaw, contralateral forelimb, or either hindlimb. Regenerating axons stemmed from original motoneurons, foreign motoneurons, and even antagonist motoneurons, but this did not impair function. Ganglionic neurons from adjacent roots also sent processes to the peripheral nerve grafts.


Sign in / Sign up

Export Citation Format

Share Document