Transdural herniation of the thoracic spinal cord: untethering via a posterolateral transpedicular approach

2004 ◽  
Vol 1 (2) ◽  
pp. 223-227 ◽  
Author(s):  
Ryder Gwinn ◽  
Fraser Henderson

✓ Anterior spinal cord herniation is a well-documented condition in which the thoracic cord becomes tethered within a defect in the anterior dura mater. Typical procedures have involved a posterior approach with direct manipulation of the thoracic cord to expose and blindly release its point of tethering. The authors report three cases in which a novel approach for the treatment of anterior thoracic cord herniation was performed, cord manipulation and traction are minimized, and direct dural repair of the defect is performed.

2005 ◽  
Vol 3 (6) ◽  
pp. 508-509
Author(s):  
Laurence Marshman

Anterior spinal cord herniation is a well-documented condition in which the thoracic cord becomes tethered within a defect in the anterior dura mater. Typical procedures have involved a posterior approach with direct manipulation of the thoracic cord to expose and blindly release its point of tethering. The authors report three cases in which a novel approach for the treatment of anterior thoracic cord herniation was performed, cord manipulation and traction are minimized, and direct dural repair of the defect is performed.


2014 ◽  
Vol 37 (v2supplement) ◽  
pp. Video5 ◽  
Author(s):  
Paul C. McCormick

Ventral thoracic spinal cord herniation is a rare but increasingly recognized cause of progressive myelopathy. This video demonstrates the imaging characteristics and surgical techniques for release and reduction of the spinal cord herniation as well as primary repair and reinforcement of the ventral dural hernia defect through an extended posterior approach. An instrumented fusion was concomitantly performed.The video can be found here: http://youtu.be/6Pcokep6Tug.


2003 ◽  
Vol 99 (3) ◽  
pp. 306-309 ◽  
Author(s):  
Victor R. Dasilva ◽  
Mubarak Al-Gahtany ◽  
Rajiv Midha ◽  
Dipanka Sarma ◽  
Perry Cooper

✓ Transdural herniation of the spinal cord, a rare but well-documented entity, has been reported sporadically for more than 25 years as a possible cause for various neurological signs and symptoms ranging from isolated sensory or motor findings to myelopathy and Brown—Séquard syndrome. The authors report, to the best of their knowledge, the first case of upper thoracic spinal cord herniation occurring after traumatic nerve root avulsion.


2018 ◽  
Vol 17 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Eric Z Herring ◽  
John H Shin ◽  
Sean J Nagel ◽  
Ajit A Krishnaney

2012 ◽  
Vol 312 (1-2) ◽  
pp. 170-172 ◽  
Author(s):  
Giorgio B. Boncoraglio ◽  
Elena Ballabio ◽  
Alessandra Erbetta ◽  
Francesco Prada ◽  
Mario Savoiardo ◽  
...  

1991 ◽  
Vol 75 (6) ◽  
pp. 911-915 ◽  
Author(s):  
Thomas H. Milhorat ◽  
David E. Adler ◽  
Ian M. Heger ◽  
John I. Miller ◽  
Joanna R. Hollenberg-Sher

✓ The pathology of hematomyelia was examined in 35 rats following the stereotactic injection of 2 µl blood into the dorsal columns of the thoracic spinal cord. This experimental model produced a small ball-hemorrhage without associated neurological deficits or significant tissue injury. Histological sections of the whole spinal cord were studied at intervals ranging from 2 hours to 4 months after injection. In acute experiments (2 to 6 hours postinjection), blood was sometimes seen within the lumen of the central canal extending rostrally to the level of the fourth ventricle. Between 24 hours and 3 days, the parenchymal hematoma became consolidated and there was an intense proliferation of microglial cells at the perimeter of the lesion. The cells invaded the hematoma, infiltrated its core, and removed erythrocytes by phagocytosis. Rostral to the lesion, the lumen of the central canal was found to contain varying amounts of fibrin, proteinaceous material, and cellular debris for up to 15 days. These findings were much less prominent in the segments of the canal caudal to the lesion. Healing of the parenchymal hematoma was usually complete within 4 to 6 weeks except for residual hemosiderin-laden microglial cells and focal gliosis at the lesion site. It is concluded that the clearance of atraumatic hematomyelia probably involves two primary mechanisms: 1) phagocytosis of the focal hemorrhage by microglial cells; and 2) drainage of blood products in a rostral direction through the central canal of the spinal cord.


1978 ◽  
Vol 48 (6) ◽  
pp. 1002-1007 ◽  
Author(s):  
Stephen E. Rawe ◽  
William A. Lee ◽  
Phanor L. Perot

✓ The early sequential histopathological alterations following a concussive paraplegic injury to the posterior thoracic spinal cord in cats were studied. The lack of significant progression of hemorrhages over a 4-hour period after injury indicates that most hemorrhages probably occur within the first hour. The marked enhancement or retardation of hemorrhages in the post-injury period, when the blood pressure was increased or decreased, respectively, demonstrates the loss of autoregulation of spinal cord vasculature at the trauma site after a concussive paraplegic injury. Progressive edema formation was evident over a 4-hour period following injury, and it could be enhanced or retarded by elevation or reduction of the systemic blood pressure.


1984 ◽  
Vol 61 (4) ◽  
pp. 761-766 ◽  
Author(s):  
Michael Salcman ◽  
Ernesto Botero ◽  
Krishna C. V. Rao ◽  
Richard D. Broadwell ◽  
Eric Scott

✓ The development of a transplantable model brain tumor in the neonatal dog, the adaptation of the tumor to tissue culture, and the successful growth of the tumor in adult mongrel dogs has been adapted to producing similar tumors in the thoracic spinal cord of the adult dog. Ten adult dogs, weighing 4 to 25.4 kg each, were subjected to formal laminectomy. The tumor cell suspension was injected by hand with a Hamilton syringe at two or three sites over a distance of 1 cm; each site received an injection volume to 0.02 to 0.05 cc of the cell suspension after the dura had been opened. Immediately after injection the field was copiously irrigated and the puncture area sealed with a single drop of ethyl cyanoacrylate. Tumor cells for injection were obtained by thawing ampules stored at −195°C in a mixture of 10% dimethyl sulfoxide and RPMI 1640 culture medium. Cells were resuspended in Hank's balanced salt solution and 15% fetal calf serum on ice. Solutions had 90% cell viability, and animals received a dose in the range of 3 to 13 × 106 cells. Eight animals developed tumors and became paraparetic on the 9th to 14th postinjection day. Metrizamide myelography in three animals revealed complete blocks; two animals underwent spinal computerized tomography (CT) and demonstrated syringohydromyelia. Histology revealed the tumors to be highly vascular primitive neoplasms that invaded the surrounding cord. This spinal cord tumor model is large enough to be operated on, studied by CT and myelography, and subjected to pharmacological, electrophysiological, and blood flow study.


2001 ◽  
Vol 10 (6) ◽  
pp. 389-393
Author(s):  
Motohiro Kajiwara ◽  
Junya Hanakita ◽  
Hideyuki Suwa ◽  
Kazuhiko Shiokawa ◽  
Masaaki Saiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document