cellular debris
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 80)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 82 ◽  
Author(s):  
H. Kahraman ◽  
C. C. Karaderi

Abstract In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. 5 ml of different organic waste materials (OWW: Olive waste water; N.B: Nutrient Broth; EW: Eggshell; PBS: PBS buffer; PLW: Peach leaf wastes; TCW: Turkish coffee wastes; TWW: Tea waste water; WCW: Waste cheese whey; WFO: Waste frying oil) were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at 14,000 rpm for 20 min at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using Turkish coffee wastes (TCW), Waste cheese whey (WCW) and Olive waste water (OWW) organic waste. We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Andrew P. Shoubridge ◽  
Célia Fourrier ◽  
Jocelyn M. Choo ◽  
Christopher G. Proud ◽  
Timothy J. Sargeant ◽  
...  

The gut microbiome-brain axis exerts considerable influence on the development and regulation of the central nervous system. Numerous pathways have been identified by which the gut microbiome communicates with the brain, falling largely into the two broad categories of neuronal innervation and immune-mediated mechanisms. We describe an additional route by which intestinal microbiology could mediate modifiable risk for neuropathology and neurodegeneration in particular. Autophagy, a ubiquitous cellular process involved in the prevention of cell damage and maintenance of effective cellular function, acts to clear and recycle cellular debris. In doing so, autophagy prevents the accumulation of toxic proteins and the development of neuroinflammation, both common features of dementia. Levels of autophagy are influenced by a range of extrinsic exposures, including nutrient deprivation, infection, and hypoxia. These relationships between exposures and rates of autophagy are likely to be mediated, as least in part, by the gut microbiome. For example, the suppression of histone acetylation by microbiome-derived short-chain fatty acids appears to be a major contributor to upregulation of autophagic function. We discuss the potential contribution of the microbiome-autophagy axis to neurological health and examine the potential of exploiting this link to predict and prevent neurodegenerative diseases.


2021 ◽  
Vol 3 ◽  
Author(s):  
Lois A. Salamonsen

Menstruation is a process whereby the outer functionalis layer of the endometrium is shed each month in response to falling progesterone and estrogen levels in a non-conception cycle. Simultaneously with the tissue breakdown, the surface is re-epithelialized, protecting the wound from infection. Once menstruation is complete and estrogen levels start to rise, regeneration progresses throughout the proliferative phase of the cycle, to fully restore endometrial thickness. Endometrial repair is unique compared to tissue repair elsewhere in the adult, in that it is rapid, scar-free and occurs around 400 times during each modern woman's reproductive life. The shedding tissue and that undergoing repair is bathed in menstrual fluid, which contains live cells, cellular debris, fragments of extracellular matrix, activated leukocytes and their products, soluble cellular components and extracellular vesicles. Proteomic and other analyses have revealed some detail of these components. Menstrual fluid, along with a number of individual proteins enhances epithelial cell migration to cover the wound. This is shown in endometrial epithelial and keratinocyte cell culture models, in an ex vivo decellularized skin model and in pig wounds in vivo. Thus, the microenvironment provided by menstrual fluid, is likely responsible for the unique rapid and scar-free repair of this remarkable tissue. Insight gained from analysis of this fluid is likely to be of value not only for treating endometrial bleeding problems but also in providing potential new therapies for poorly repairing wounds such as those seen in the aged and in diabetics.


Abstract The aim of this study was to describe the histological effects of two high postnatal doses of the potent third-generation GnRH antagonist, acyline in the domestic cat testicle. Secondly, the physical, endocrine, and steroidogenic findings of this pharmaceutical protocol are also reported. Twelve postnatal littermate male kittens were administered acyline in a dose of 2.2 mg/100 g SC weekly for 2 weeks (ACY; n = 6), or placebo (PL; n = 6). All the animals were followed up until puberty when they were castrated. Serial faecal samples were collected until the age of 10 weeks for testosterone (T) measurement. The kittens achieved puberty without either age (236.5 ± 19.7 vs. 221.7 ± 23.7 days) or body weight (3.05 ± 0.15 vs. 2.78 ± 0.28 kg, P > 0.05) differences between ACY and PL, respectively. Acyline suppressed faecal T concentrations for 3 weeks (P < 0.01). From the fourth week on, both groups had low concentrations up to the end of the follow-up period (P > 0.05). Histological assessment of the testes showed that ACY cats presented a reduced height of the epithelium (P < 0.01) due to the diminished number of germinal cells accompanied by an enlarged luminal area (P < 0.01) with cellular debris (P < 0.01). The immunostaining of P450c17 also appeared partially diminished in ACY testes.


Author(s):  
Vaibhav G. Hatwar ◽  
Ranjana Sharma ◽  
Mayur Wanjari ◽  
Pratibha Wankhede ◽  
Sagar Alwadkar ◽  
...  

Introduction: Mucinous Cystadenoma carcinoma is a type of tumor in the cyst adenocarcinoma grouping it can occur in the breast as well as the ovary. Tumors are normally multiocular with various smooth thin-walled cysts. Within the cyst is found an emergence or cellular debris. Patient History: The female patient 63-year-old who was admitted to AVBRH on the date 21/05/2021 in the obstetric and gynae ward with a chief complaint of generalized weakness, loss of appetite, fever for 2 days 7 days ago, 2-3 fever spikes and burning micturition. All over investigation observed like blood and urine investigation, CT scan of the abdomen, histopathology then the final diagnosis is confirmed as mucinous Cystadenoma carcinoma. Pharmacology: The patient was treated with antibacterial medicine, antibiotics, and diabetics, thyroxin stimulating drugs, etc. Management: Inj. Ceftriaxone 1gm 12 hourly, Inj.-piptaz 4.45 gm, 8 hourly, tab. Gimipride 0.5 mg with tab. Metformin 500 mg 12 hourly, tab. Thyrox 62.5 mcg, tab telmisartan 40 mg with tab. Chlorthalidone 12.512.5 mg 12 hourly, Inj.-pan 40 mg, 12 hourly, Inj.- Neomol 100 ml, and Tablet- nitrofurantoin 6 hourly. Nursing Management: Monitor the vital sign, monitor nutritional status and monitor random blood sugar. Maintained bed rest of patient, managed the pain level of the patient. The patient was assessed for risk of bleeding. Conclusion: The patient was admitted to the hospital with the chief complaint of generalized weakness, loss of appetite, fever for 2 days 7 days ago, 2-3 fever spikes and burning micturition.  and the patient was admitted to AVBR Hospital in the obstetric and gynae ward, immediate treatment was started by a health team member and all possible treatments were given and now the patient's condition is satisfactory.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1446
Author(s):  
Youjoung Kim ◽  
Evon S. Ereifej ◽  
William E. Schwartzman ◽  
Seth M. Meade ◽  
Keying Chen ◽  
...  

(1) Background: Intracortical microelectrodes (IMEs) are essential to basic brain research and clinical brain–machine interfacing applications. However, the foreign body response to IMEs results in chronic inflammation and an increase in levels of reactive oxygen and nitrogen species (ROS/RNS). The current study builds on our previous work, by testing a new delivery method of a promising antioxidant as a means of extending intracortical microelectrodes performance. While resveratrol has shown efficacy in improving tissue response, chronic delivery has proven difficult because of its low solubility in water and low bioavailability due to extensive first pass metabolism. (2) Methods: Investigation of an intraventricular delivery of resveratrol in rats was performed herein to circumvent bioavailability hurdles of resveratrol delivery to the brain. (3) Results: Intraventricular delivery of resveratrol in rats delivered resveratrol to the electrode interface. However, intraventricular delivery did not have a significant impact on electrophysiological recordings over the six-week study. Histological findings indicated that rats receiving intraventricular delivery of resveratrol had a decrease of oxidative stress, yet other biomarkers of inflammation were found to be not significantly different from control groups. However, investigation of the bioavailability of resveratrol indicated a decrease in resveratrol accumulation in the brain with time coupled with inconsistent drug elution from the cannulas. Further inspection showed that there may be tissue or cellular debris clogging the cannulas, resulting in variable elution, which may have impacted the results of the study. (4) Conclusions: These results indicate that the intraventricular delivery approach described herein needs further optimization, or may not be well suited for this application.


2021 ◽  
Author(s):  
Bichandarkoil Jayaram Pratima ◽  
Namasivayam Nalini

Several cell death modes, each with a unique feature and mode of inducing cell death have been established. Cell death occurring under physiological conditions is primarily caused by apoptosis, which is a non-inflammatory or silent process, whereas necroptosis or pyroptosis is triggered by pathogen invasion, which stimulates the immune system and induces inflammation. In physiology, clearing dead cells and associated cellular debris is necessary since billions of cells die during mammalian embryogenesis and every day in adult organisms. For degradation, dead cells produced by apoptosis are quickly engulfed by macrophages. This chapter will present a description of the phagocytosis of dead and dying cells, by a process known as efferocytosis. Macrophages and, to a lesser degree, other ‘professional’ phagocytes (such as monocytes and dendritic cells) and ‘non-professional’ phagocytes, such as epithelial cells, conduct efferocytosis. Recent discoveries have shed light on this mechanism and how it works to preserve homeostasis of tissue, repair of tissue and health of the organism. Caspases are a large family of proteases of cysteine acting in cascades. A cascade leading to activation of caspase 3 mediates apoptosis and is responsible for killing cells, hiring macrophages, and presenting a “eat me” signal(s). If macrophages do not effectively engulf apoptotic cells, they undergo secondary necrosis and release intracellular materials that reflect a molecular pattern associated with injury, which can lead to autoimmune diseases. Here, the processes of efferocytosis are illustrated and the pathophysiological effects that which occur when this phase is abrogated are highlighted.


2021 ◽  
Author(s):  
Sol Beccari ◽  
Virginia Sierra-Torre ◽  
Jorge Valero ◽  
Mikel Garcia-Zaballa ◽  
Alejandro Carretero-Guillen ◽  
...  

Microglial phagocytosis is rapidly emerging as a therapeutic target in neurodegenerative and neurological disorders. An efficient removal of cellular debris is necessary to prevent buildup damage of neighbor neurons and the development of an inflammatory response. As the brain professional phagocytes, microglia are equipped with an array of mechanisms that enable them to recognize and degrade several types of cargo, including neurons undergoing apoptotic cell death. While microglia are very competent phagocytes of apoptotic cells under physiological conditions, here we report their dysfunction in mouse and monkey (Macaca fascicularis and Callithrix jacchus) models of stroke by transient occlusion of the medial cerebral artery (tMCAo). The impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrients deprivation (OND), which led to reduced process motility, lysosomal depletion, and the induction of a protective autophagy response in microglia. Basal autophagy, which is in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using knock-out models of autophagy genes and the autophagy inhibitor MRT68921. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro. These results suggest a more complex role of microglia in stroke than previously acknowledged, classically related to the inflammatory response. In contrast, here we demonstrate the impairment of apoptotic cell phagocytosis, a microglial function critical for brain recovery. We propose that phagocytosis is a therapeutic target yet to be explored and provide evidence that it can be modulated in vivo using rapamycin, setting the stage for future therapies for stroke patients.


2021 ◽  
Vol 22 (22) ◽  
pp. 12143
Author(s):  
Regina P. Markus ◽  
Kassiano S. Sousa ◽  
Sanseray da Silveira Cruz-Machado ◽  
Pedro A. Fernandes ◽  
Zulma S. Ferreira

Melatonin is a highly conserved molecule found in prokaryotes and eukaryotes that acts as the darkness hormone, translating environmental lighting to the whole body, and as a moderator of innate and acquired defense, migration, and cell proliferation processes. This review evaluates the importance of pineal activity in monitoring PAMPs and DAMPs and in mounting an inflammatory response or innate immune response. Activation of the immune–pineal axis, which coordinates the pro-and anti-inflammatory phases of an innate immune response, is described. PAMPs and DAMPs promote the immediate suppression of melatonin production by the pineal gland, which allows leukocyte migration. Monocyte-derived macrophages, important phagocytes of microbes, and cellular debris produce melatonin locally and thereby initiate the anti-inflammatory phase of the acute inflammatory response. The role of locally produced melatonin in organs that directly contact the external environment, such as the skin and the gastrointestinal and respiratory tracts, is also discussed. In this context, as resident macrophages are self-renewing cells, we explore evidence indicating that, besides avoiding overreaction of the immune system, extra-pineal melatonin has a fundamental role in the homeostasis of organs and tissues.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2991
Author(s):  
Lena M. Ernst ◽  
Eudald Casals ◽  
Paola Italiani ◽  
Diana Boraschi ◽  
Victor Puntes

The immune system contributes to maintaining the body’s functional integrity through its two main functions: recognizing and destroying foreign external agents (invading microorganisms) and identifying and eliminating senescent cells and damaged or abnormal endogenous entities (such as cellular debris or misfolded/degraded proteins). Accordingly, the immune system can detect molecular and cellular structures with a spatial resolution of a few nm, which allows for detecting molecular patterns expressed in a great variety of pathogens, including viral and bacterial proteins and bacterial nucleic acid sequences. Such patterns are also expressed in abnormal cells. In this context, it is expected that nanostructured materials in the size range of proteins, protein aggregates, and viruses with different molecular coatings can engage in a sophisticated interaction with the immune system. Nanoparticles can be recognized or passed undetected by the immune system. Once detected, they can be tolerated or induce defensive (inflammatory) or anti-inflammatory responses. This paper describes the different modes of interaction between nanoparticles, especially inorganic nanoparticles, and the immune system, especially the innate immune system. This perspective should help to propose a set of selection rules for nanosafety-by-design and medical nanoparticle design.


Sign in / Sign up

Export Citation Format

Share Document