DATA-BASED UNCERTAINTY MODELING BY CONVEX OPTIMIZATION TECHNIQUES

2006 ◽  
Vol 39 (2) ◽  
pp. 91-96
Author(s):  
Kurt E. Häggblom
Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2156 ◽  
Author(s):  
Hossein Shayeghi ◽  
Elnaz Shahryari ◽  
Mohammad Moradzadeh ◽  
Pierluigi Siano

Aggregation of distributed generations (DGs) along with energy storage systems (ESSs) and controllable loads near power consumers has led to the concept of microgrids. However, the uncertain nature of renewable energy sources such as wind and photovoltaic generations, market prices and loads has led to difficulties in ensuring power quality and in balancing generation and consumption. To tackle these problems, microgrids should be managed by an energy management system (EMS) that facilitates the minimization of operational costs, emissions and peak loads while satisfying the microgrid technical constraints. Over the past years, microgrids’ EMS have been studied from different perspectives and have recently attracted considerable attention of researchers. To this end, in this paper a classification and a survey of EMSs has been carried out from a new point of view. EMSs have been classified into four categories based on the kind of the reserve system being used, including non-renewable, ESS, demand-side management (DSM) and hybrid systems. Moreover, using recent literature, EMSs have been reviewed in terms of uncertainty modeling techniques, objective functions (OFs) and constraints, optimization techniques, and simulation and experimental results presented in the literature.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Costin D. Untaroiu ◽  
Paul E. Allaire ◽  
William C. Foiles

In some industrial applications, influence coefficient balancing methods fail to find the optimum vibration reduction due to the limitations of the least-squares optimization methods. Previous min-max balancing methods have not included practical constraints often encountered in industrial balancing. In this paper, the influence coefficient balancing equations, with suitable constraints on the level of the residual vibrations and the magnitude of correction weights, are cast in linear matrix inequality (LMI) forms and solved with the numerical algorithms developed in convex optimization theory. The effectiveness and flexibility of the proposed method have been illustrated by solving two numerical balancing examples with complicated requirements. It is believed that the new methods developed in this work will help in reducing the time and cost of the original equipment manufacturer or field balancing procedures by finding an optimum solution of difficult balancing problems. The resulting method is called the optimum min-max LMI balancing method.


2004 ◽  
Vol 21 (01) ◽  
pp. 9-33
Author(s):  
JAVIER SALMERÓN ◽  
ÁNGEL MARÍN

In this paper, we present an algorithm to solve a particular convex model explicitly. The model may massively arise when, for example, Benders decomposition or Lagrangean relaxation-decomposition is applied to solve large design problems in facility location and capacity expansion. To attain the optimal solution of the model, we analyze its Karush–Kuhn–Tucker optimality conditions and develop a constructive algorithm that provides the optimal primal and dual solutions. This approach yields better performance than other convex optimization techniques.


Sign in / Sign up

Export Citation Format

Share Document