scholarly journals Predictive Control for Multi-Robot Observation of Multiple Moving Targets Based on Discrete-Continuous Linear Models

2011 ◽  
Vol 44 (1) ◽  
pp. 257-262 ◽  
Author(s):  
Juliane Kuhn ◽  
Christian Reinl ◽  
Oskar von Stryk
Author(s):  
Zheng Liu ◽  
◽  
Marcelo H. Ang Jr. ◽  
Winston Khoon Guan Seah ◽  
◽  
...  

The "museum problem" is a typical research topic on multi-robot observation of multiple moving targets. The objective of museum problem is to optimize the distribution of robots, such that the maximal moving targets can be observed. In this paper, we present our memory based searching and artificial potential field based tracking framework for museum problem. For searching, a memory table, either local or shared, can help shorten the searching time for targets. For tracking, our artificial potential field based motion control provides real-time tracking of moving targets with collision avoidance. Qualitative simulations demonstrate the capability of our searching and tracking framework.


2009 ◽  
Vol 18 (07) ◽  
pp. 1167-1183 ◽  
Author(s):  
FARZAD TAHAMI ◽  
MEHDI EBAD

In this paper, different model predictive control synthesis frameworks are examined for DC–DC quasi-resonant converters in order to achieve stability and desired performance. The performances of model predictive control strategies which make use of different forms of linearized models are compared. These linear models are ranging from a simple fixed model, linearized about a reference steady state to a weighted sum of different local models called multi model predictive control. A more complicated choice is represented by the extended dynamic matrix control in which the control input is determined based on the local linear model approximation of the system that is updated during each sampling interval, by making use of a nonlinear model. In this paper, by using and comparing these methods, a new control scheme for quasi-resonant converters is described. The proposed control strategy is applied to a typical half-wave zero-current switching QRC. Simulation results show an excellent transient response and a good tracking for a wide operating range and uncertainties in modeling.


2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Michal Kvasnica ◽  
Martin Herceg ◽  
Ľuboš Čirka ◽  
Miroslav Fikar

AbstractThis paper presents a case study of model predictive control (MPC) applied to a continuous stirred tank reactor (CSTR). It is proposed to approximate nonlinear behavior of a plant by several local linear models, enabling a piecewise affine (PWA) description of the model used to predict and optimize future evolution of the reactor behavior. Main advantage of the PWA model over traditional approaches based on single linearization is a significant increase of model accuracy which leads to a better control quality. It is also illustrated that, by adopting the PWA modeling framework, MPC strategy can be implemented using significantly less computational power compared to nonlinear MPC setups.


2020 ◽  
Vol 34 (04) ◽  
pp. 3545-3552
Author(s):  
Yiding Chen ◽  
Xiaojin Zhu

We describe an optimal adversarial attack formulation against autoregressive time series forecast using Linear Quadratic Regulator (LQR). In this threat model, the environment evolves according to a dynamical system; an autoregressive model observes the current environment state and predicts its future values; an attacker has the ability to modify the environment state in order to manipulate future autoregressive forecasts. The attacker's goal is to force autoregressive forecasts into tracking a target trajectory while minimizing its attack expenditure. In the white-box setting where the attacker knows the environment and forecast models, we present the optimal attack using LQR for linear models, and Model Predictive Control (MPC) for nonlinear models. In the black-box setting, we combine system identification and MPC. Experiments demonstrate the effectiveness of our attacks.


Sign in / Sign up

Export Citation Format

Share Document