scholarly journals Crystallization of Binary Alloys and Non-Equilibrium Phase Transitions

2019 ◽  
Vol 489 (6) ◽  
pp. 545-551
Author(s):  
E. V. Radkevich ◽  
O. A. Vasil’eva ◽  
M. I. Sidorov

A model was constructed for the reconstruction of the initial stage of crystallization of binary alloys as a nonequilibrium phase transition, the mechanism of which is diffusion stratification. Numerical experiments were performed. Self-excitation of a homogeneous state by the edge control melt cooling condition.

2017 ◽  
Vol 114 (49) ◽  
pp. 12906-12909 ◽  
Author(s):  
Ricard Alert ◽  
Pietro Tierno ◽  
Jaume Casademunt

Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.


Sign in / Sign up

Export Citation Format

Share Document