colloidal system
Recently Published Documents


TOTAL DOCUMENTS

294
(FIVE YEARS 95)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 218 ◽  
pp. 106413
Author(s):  
Monika Šuteková ◽  
Martin Barlog ◽  
Tímea Šimonová Baranyaiová ◽  
Robert Klement ◽  
Gary J. Richards ◽  
...  

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 544
Author(s):  
Oscar Cervantes ◽  
Zaira del Rocio Lopez ◽  
Norberto Casillas ◽  
Peter Knauth ◽  
Nayeli Checa ◽  
...  

A ferrofluid with 1,2-Benzenediol-coated iron oxide nanoparticles was synthesized and physicochemically analyzed. This colloidal system was prepared following the typical co-precipitation method, and superparamagnetic nanoparticles of 13.5 nm average diameter, 34 emu/g of magnetic saturation, and 285 K of blocking temperature were obtained. Additionally, the zeta potential showed a suitable colloidal stability for cancer therapy assays and the magneto-calorimetric trails determined a high power absorption density. In addition, the oxidative capability of the ferrofluid was corroborated by performing the Fenton reaction with methylene blue (MB) dissolved in water, where the ferrofluid was suitable for producing reactive oxygen species (ROS), and surprisingly a strong degradation of MB was also observed when it was combined with H2O2. The intracellular ROS production was qualitatively corroborated using the HT-29 human cell line, by detecting the fluorescent rise induced in 2,7-dichlorofluorescein diacetate. In other experiments, cell metabolic activity was measured, and no toxicity was observed, even with concentrations of up to 4 mg/mL of magnetic nanoparticles (MNPs). When the cells were treated with magnetic hyperthermia, 80% of cells were dead at 43 °C using 3 mg/mL of MNPs and applying a magnetic field of 530 kHz with 20 kA/m amplitude.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Irina N. Gribkova ◽  
Michail N. Eliseev ◽  
Yuri D. Belkin ◽  
Maxim A. Zakharov ◽  
Olga A. Kosareva

Recent studies have revealed an interest in the composition of beer biomolecules as a colloidal system and their influence on the formation of beer taste. The purpose of this research was to establish biochemical interactions between the biomolecules of plant-based raw materials of beer in order to understand the overall structure of beer as a complex system of bound biomolecules. Generally accepted methods of analytical research in the field of brewing, biochemistry and proteomics were used to solve the research objectives. The studies allowed us to establish the relationship between the grain and plant-based raw materials used, as well as the processing technologies and biomolecular profiles of beer. The qualitative profile of the distribution of protein compounds as a framework for the formation of a colloidal system and the role of carbohydrate dextrins and phenol compounds are given. This article provides information about the presence of biogenic compounds in the structure of beer that positively affect the functioning of the body. A critical assessment of the influence of some parameters on the completeness of beer taste by biomolecules is given. Conclusion: the conducted analytical studies allowed us to confirm the hypothesis about the nitrogen structure of beer and the relationship of other biomolecules with protein substances, and to identify the main factors affecting the distribution of biomolecules by fractions.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7908
Author(s):  
Nader Nciri ◽  
Namho Kim ◽  
Namjun Cho

To take swift action towards tackling the global pollution crisis of discarded lithium-ion batteries (LIBs) while reinforcing road structures, this investigation was undertaken. The influence of various proportions of spent graphite (e.g., 5, 10, and 15 wt.% SG), harvested from end-of-life LIBs, on the performance of base AP-5 asphalt cement was studied. Multiple laboratory techniques have been employed to characterize the internal physiochemical interaction between the additive and the binder. These techniques include: elemental analysis (EA), thin-layer chromatography-flame ionization detection (TLC-FID), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), empirical test methods (e.g., penetration, softening point, viscosity, and ductility), dynamic shear rheometer (DSR), and multiple stress-creep recovery (MSCR). Prior to aging, SARA analysis demonstrated that the incremental SG addition into the AP-5 bitumen reduced the contents of saturates, aromatics, and resins, and increased the proportion of asphaltenes. After aging, the saturated and aromatic hydrocarbons kept decreasing; however, the resins increased and the asphaltenes declined. Accordingly, this has brought a progressive shift tendency in the stable–colloidal system for all binders from sol-state towards sol-gel-state. FT-IR scan revealed that the SG has no apparent chemical interaction with the binder, and is endowed solely with filling effects. XRD diagnosis highlighted that the steady SG incorporation into the binder amplified its crystallinity; thereby boosting the thermomechanical properties of mastics. SEM imaging unveiled that the lower-dose of SG exhibited higher compatibility within the bitumen matrix; nevertheless, the intermediate/higher-doses made the binder body relatively rougher. DSR/MSCR/conventional tests indicated that when the asphalt is blended with the graphitic powder under unaged/aged conditions, it becomes stiffer, more viscous, and less cohesive; thereby rendering it more resistant to deformation but not to cracking. In summary, it is promisingly proven that the SG could be successfully used as an asphalt additive and could be beneficial for improving paving performance and mitigating the pollution caused by dead LIBs as well.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jano Markhulia ◽  
Shalva Kekutia ◽  
Vladimer Mikelashvili ◽  
László Almásy ◽  
Liana Saneblidze ◽  
...  

Abstract Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted the particular interest of scientists from various disciplines since their obtaining to the present day. The physicochemical and pharmacokinetic properties of SPIONs-containing magnetic nanofluids, and their applicability in biomedicine, largely depend on the stability of the colloidal system, particle size, size distribution, net magnetic moment, phase composition, and type and properties of stabilizers. Also, in some cases, when using magnetic nanoparticles for biomedical purposes, it is necessary that the stabilizing ligands of nanoparticles should not significantly change the magnetic properties. From this point of view, the preparation of stable colloidal systems containing bare iron oxide nanoparticles (BIONs) in water at physiological pH attracts particular attention and becomes increasingly popular in scientific circles. This study is focused on the development of the synthesis of aqueous suspensions of SPIONs stabilized with various organic molecules (oleic acid [OA] and poly(ethylene glycol) monooleate - with molecular weights 460 and 860) using a modified controlled chemical coprecipitation reaction, as well as stable nanofluids containing BIONs in an aqueous medium at neutral pH (near-physiological). The obtained samples were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy, small-angle x-ray scattering (SAXS), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and Vibrating Sample Magnetometry.


2021 ◽  
Vol 5 (2) ◽  
pp. 197-204
Author(s):  
Wirna Eliza ◽  
Eka Yusmaita

This study aims to develop a chemical literacy instrument on colloidal system material that can be used to measure the literacy level of students. The research design on the development of this chemical literacy instrument uses the Model of Educational Reconstruction (MER). This research has several stages including content structure analysis (curriculum analysis, content analysis, context analysis, content validity by subject matter experts) and teaching and learning research (student interview investigation). The content validity test is carried out by five validators and the results will be analyzed by the Rasch model using the facet application. The results of this study indicate that the value of exact agreements is 88.9%, while the value of the expected agreements is 89.6% so it can be said that the results of the examiner's assessment are not much different from the expected results of the assessment


Author(s):  
Xun Tang ◽  
Martha A. Grover

A colloidal system is a large collection of micrometer-sized particles suspended in a liquid, and the state of the system can be measured in real time, using imaging techniques and image processing. The assembly of the particles is driven by interactions between the particles and the surrounding liquid, as well as by external fields, including electromagnetic, flow, and gravitational fields. The dynamics of the many-body system are high-dimensional, nonlinear, and stochastic. However, low-order models are derived in some cases, often using physics-based order parameters, to facilitate studying the system dynamics. With an understanding of the system dynamics, and by manipulating the aforementioned interactions, one can control the assembly process in real time using open-loop and closed-loop feedback control. Theoretical studies and experimental demonstrations of colloidal self-assembly control have been reported, with methods ranging from heuristic rules to model-based optimal feedback control. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Min Ying Tsang ◽  
Shun Tokuda ◽  
Po-Chun Han ◽  
Zaoming Wang ◽  
Alexandre Legrand ◽  
...  

Assembling many chemical components into a material in a controlled manner is one of the biggest challenges in chemistry. Particularly porous materials with multivariate character within their scaffolds are expected to demonstrate synergistic properties. In this study, we show a synthetic strategy to construct porous networks with multiple chemical components. By taking advantage of the hierarchical nature of a colloidal system based on metal-organic polyhedra (MOPs), we developed a two-step assembly process to form colloidal networks; assembling of MOPs with the organic linker to the formation of MOP network as a colloidal particle, followed by further connecting colloids by additional crosslinkers, leading to colloidal networks. This synthetic process allows not only for the use of different organic linkers for connecting MOPs and colloidal particles, respectively, but for assembling different colloidal particles formed by various MOPs. The proof-of-concept of this tuneable multivariate colloidal gel system offers an alternative to developing functional porous soft materials with multifunction.


2021 ◽  
Vol 2104 (1) ◽  
pp. 012021
Author(s):  
Mahdian ◽  
A M Rahman ◽  
Leny ◽  
Rusmansyah ◽  
P Saadi

Abstract This study aims to find out (1) the improvement of students’ critical thinking skills to the application of probing prompting learning models assisted by virtual reality media in colloidal system materials, (2) improvement of students’ learning outcomes against the application of probing learning models assisted by virtual reality media on colloidal system materials, (3) the response of students to the application of probing learning models assisted by virtual reality media on colloidal system materials. tudy pretest-posttest design. This study sample was a student of class XI MIPA 4 at SMA Negeri 8 Kota Banjarmasin. Data collection uses to test and non-test techniques. Data analysis techniques use descriptive and inferential analysis techniques. The results showed that: (1) the application of The Probing Prompting learning model assisted by Virtual Reality media could improve the critical thinking skills of students, (2) the application of the learning model probing prompting assisted by virtual reality media on colloidal system materials can improve students’ learning outcomes, (3) the application of Probing Prompting learning model assisted by Virtual Reality media gets a good response from students.


2021 ◽  
Vol 4 (2) ◽  
pp. 120-126
Author(s):  
Devi Ayu Septiani ◽  
Jono Irawan ◽  
Hermansyah Hermansyah ◽  
Yayuk Andayani

The Melala is a tradition of the Sumbawa people who use coconut milk to obtain Sumbawa oil for traditional medicine. Coconut milk is a colloidal system of stable oil in water (O/W) microemulsion. Within a particular time, the emulsion will split to produce oil (VCO), protein, and water due to the colloid equilibrium on the stability of the coconut milk emulsion. The purpose of this study was to compare the microemulsion stability of the coconut milk colloid system. The VCO was isolated by heating, enzymatically, acidifying, and adding whiting methods for comparison. The physical stability of the O/W microemulsion was measured by the volume of VCO produced from various isolation methods in simple laboratory experiments. The results showed that the physical stability of the O/W microemulsion on VCO isolation by enzymatic method using papain enzyme was the least.


Sign in / Sign up

Export Citation Format

Share Document