scholarly journals Analisis Kekuatan Ball Valve Akibat Tekanan Fluida Menggunakan Finite Element Analysis

2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Meri Rahmi ◽  
Delffika Canra ◽  
Suliono Suliono

Valve (katup) sebagai salah satu produk industri, sangat dibutuhkan oleh perusahaan yang bergerak mengontrol aliran cairan untuk efisiensi. Kebutuhan tentang ini banyak digunakan oleh perusahaan makanan, obat-obatan, minuman, pembangkit listrik dan industri minyak dan gas. Tujuan penggunaan valve adalah untuk membatasi dan mengontrol cairan pada kondisi tekanan tinggi. Salah satu katup yang sering digunakan adalah ball valve, yaitu katup dengan tipe gerak memutar. Adanya permintaan ball valve ini, dibutuhkan produk dengan spesifikasi tertentu memiliki rancangan dengan tingkat kekuatan yang baik. Dengan kata lain, produk valve (katup) yang baik, harus memiliki kekuatan yang baik, aman dan sesuai dengan kebutuhan dilakukan pengujian. Penelitian ini bertujuan untuk melakukan analisis terhadap ball valve 4 inch ANSI 300 untuk memastikan katup yang diproduksi sesuai spesifikasi, kuat dan tahan terhadap tekanan fluida. Metode yang digunakan adalah Finite Element Analysis (FEA) dengan software Solidworks. Analisis dilakukan pada ball valve 4 inch ANSI 300 dengan keadaan full open, hall open dan full closed serta dengan pembebanan 725 psi dan 1087.5 psi hasil dari Computational Fluid Dynamics (CFD). Analisis dilakukan pada temperatur -29.50C, 250C dan 4250C. Berdasarkan hasil analisis dengan FEA, dinyatakan bahwa ball valve 4 inch ANSI 300 kuat dan aman untuk digunakan. Nilai faktor keamanan (safety factor), signifikan lebih tinggi dari nilai safety factor minimum yang diizinkan.

Author(s):  
Phil Martinez ◽  
Sean M. McGuffie ◽  
Michael A. Porter

This paper details the procedures necessary to accurately determine the stress in the bolts on a coke gasifier inlet flange using current state-of-the-art practices. Using accepted ASME Code practices (ASME [1]), the stress results are then used to justify the elimination of the spacers that were specified in the original design. Computational fluid dynamics (CFD) is employed to determine heat transfer coefficient distributions in the areas of interest. Finite element (FE) analysis is used to compute the transient assembly temperatures and related bolt stresses. By evaluating the bolt stresses as specified in ASME Div. 1 [1], these analyses were used to determine that the spacers could safely be eliminated during operation.


2002 ◽  
Vol 30 (3) ◽  
pp. 198-212 ◽  
Author(s):  
T. Rooney ◽  
J. Satrape ◽  
S. Liu

Abstract All terrain vehicles (ATV) travel on every imaginable type of surface — from hard pack trails to muddy swamps. ATV tires must provide customer with acceptable ride and handling performance, and they must also generate extremely good wet traction characteristics in order to pull the vehicle through the tough stuff. This paper looks at a design tool that is routinely used to achieve one of these goals — optimum mud (wet) traction performance. Techniques described in this study evaluate the self-cleaning ability of tread patterns. Smooth tires were modeled at typical vehicle loads and inflation pressures using finite element analysis. Footprint shapes and pressure distributions were taken from the analysis and used as input into the flow model. Mud was modeled as a highly viscous, Newtonian fluid and forced through the tread pattern. Flow velocities and pressures were computed using computational fluid dynamics and these responses were used to generate an overall measure of the cleaning efficiency of the tread. By visualizing the results, potential “clog” areas were identified and the tread pattern modified to improve flow.


Author(s):  
Xuwei Luo ◽  
Xiaochun Zeng ◽  
Pingping Zou ◽  
Yuxing Lin ◽  
Tao Wei ◽  
...  

A finite element analysis-computational fluid dynamics coupled analysis on the thermo-mechanical fatigue of cylinder head of a turbo-charged diesel engine was performed, and the complete simulation process is illustrated in this paper. In-cylinder combustion analysis and water jacket coolant flow analysis were conducted to provide heat transfer boundary conditions to the temperature field calculation of the cylinder head. Comparing with the conventional finite element analysis of cylinder head by which the heat transfer boundary conditions of the combustion and coolant sides are estimated, the present method coupled the three-dimensional combustion computational fluid dynamics and coolant computational fluid dynamics with the finite element analysis. Both computational fluid dynamics and finite element analysis obtain more accurate boundary conditions on their interface from each other, and thus, the present method improves accuracy of thermo-mechanical fatigue prediction. Based on the measured material performance parameters such as stress–strain curve under different temperatures and E–N curve, creep, and oxidation data material performance, the cylinder head–gasket–cylinder block finite element transient stress–strain field was calculated using ABAQUS. The thermo-mechanical fatigue analysis of cylinder head submodel was performed by using FEMFAT software that is based on the Sehitoglu model to predict the thermo-mechanical fatigue life of cylinder head. By comparing the measured and predicted temperatures of cylinder head, the temperature results showed a good agreement, and the error is less than 10%.


Sign in / Sign up

Export Citation Format

Share Document