scholarly journals The Col-Gully and Glacial Deposits at Court Hill, Clevedon, Near Bristol, England

1978 ◽  
Vol 20 (82) ◽  
pp. 173-188 ◽  
Author(s):  
D. D. Gilbertson ◽  
A. B. Hawkins

AbstractAn outline is given of the Quaternary geology and geomorphology of Court Hill Col in Failand Ridge near Clevedon, Avon County, from observations made during the construction of the M5 Motorway.A glacial col-gully about 100 m wide and approximately 25 m deep is described. The col-gully, eroded through the Carboniferous Limestone, opens and deepens northward. Associated with the Col and the col-gully is a complex sequence of Quaternary deposits. Uppermost in the sequence is a layer of red sandy silt (cover sand) approximately 0.5 m thick, of periglacial origin, probably of Devensian (Weichselian) age. Largely confined to the col-gully are unstratified tills, stratified ice-contact deposits and glacio-lacustrine deltaic deposits. The glaciogenic deposits are up to 25 m thick. Boulders of about 8 Mg in weight have been observed.The geomorphology of the col-gully, and the stratification and composition of the glaciogenic deposits, demonstrate that an ice sheet at least 85 m thick had impinged against the south flank of Failand Ridge and was discharging immense quantities of water and sediment down an ice-contact slope through the Col into a small ice-marginal lake north of the col-gully. The ice sheet is regarded as being Wolstonian, or Anglian, in age.The precise origins of the col-gully and the interpretation of the glacial sequence are not yet completely clear. However, it is believed that the balance of evidence indicates that both the col-gully itself and the glaciogenic deposits represent a complex sub-, en- and pro-glacial sequence associated with the downwasting and division of an ice mass into two parts by the "emergence" of Failand Ridge. The possible extent and geomorphological implications of ice-sheet penetration into the Bristol area are briefly discussed.

1932 ◽  
Vol 69 (5) ◽  
pp. 209-233 ◽  
Author(s):  
G. D. Osborne

THE Carlingford-Barnave district falls within the boundaries of Sheet 71 of the Ordnance Survey of Ireland, and forms part of a broad promontory lying between Carlingford Lough on the north-east and Dundalk Bay on the south-west. The greater part of this promontory is made up of an igneous complex of Tertiary age which has invaded the Silurian slates and quartzites and the Carboniferous Limestone Series. This complex has not yet been investigated in detail, but for the purposes of the present paper certain references to it are necessary, and these are made below. The prevalence of hybrid-relations and contamination-effects between the basic and acid igneous rocks of the region is a very marked feature, and because of this it has been difficult at times to decide which types have been responsible for the various stages of the metamorphism.


1874 ◽  
Vol 1 (11) ◽  
pp. 496-510 ◽  
Author(s):  
J. G. Goodchild

In a letter to Nature for 14th May, 1874, Mr. Belt has expressed his belief that the presence of shells in glacial deposits, at whatever elevation they may be found, does not necessarily constitute a proof that the land has been depressed to that extent relatively to the level of the sea; but that in such cases as those of the drifts of the basin of the Irish Sea the shells occur in their present positions because they were thrust thither out of the bed of the sea by the ice-sheet which was advancing from the North.


2014 ◽  
Vol 119 (2) ◽  
pp. 631-645 ◽  
Author(s):  
Mark E. Inall ◽  
Tavi Murray ◽  
Finlo R. Cottier ◽  
Kilian Scharrer ◽  
Timothy J. Boyd ◽  
...  

1991 ◽  
Vol 96 (3-4) ◽  
pp. 247-267 ◽  
Author(s):  
J.C. Faugères ◽  
E. Gonthier ◽  
L. Masse ◽  
M. Parra ◽  
J.C. Pons ◽  
...  

2021 ◽  
Vol 233 ◽  
pp. 03035
Author(s):  
Zhuzhu Yu ◽  
Zhiguo He ◽  
Li Li ◽  
Taoyan Ye ◽  
Yuezhang Xia

Based on FVCOM hydrodynamic numerical model and coastline topographic data in 2013, a three-dimensional numerical model of fine sediment transport in Hangzhou Bay has been established to explore the water and sediment exchange mechanism between Hangzhou Bay and the open sea at different typical sections. The results of validation with measured and satellite retrieved data show that the model can well simulate the process of water and sediment movement in Hangzhou Bay. Compared with the calculation results of the coastline topographic data of Hangzhou Bay in 1974 and 2020, the influence mechanism of shoreline change on the water and sediment exchange mechanism between Hangzhou Bay and the open sea has been studied. The results show that the sediment transport inside and outside the Hangzhou Bay is generally in the pattern of north-inflow and south-discharge. Compared with the coastline in 1974, the sediment transport from Yangshan port in the north of Hangzhou Bay and Zhoushan Islands in the middle of Hangzhou Bay increases when the coastline is pushed into the bay in 2020, while the outward sediment transport from Jintang Channel in the South decreases. The overall trend features that the sediment transport into the bay increases, with the bay mouth silting. In the three sections extending from Hangzhou Bay to the open sea, the inflowing water and sediment of the horizontal section on the north side is decreasing, while the discharged sediment from the south side and the inflowing water and discharged sediment from the vertical section at the east side are increasing.


Baltica ◽  
2014 ◽  
Vol 27 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Dmitrij Gerok ◽  
Leonora Živilė Gelumbauskaitė ◽  
Tom Flodén ◽  
Algimantas Grigelis ◽  
Albertas Bitinas

The present study area is located within the south–eastern segment of the Baltic Sea framed by 55o30’–56o30’ N and 19o00’–21o15’E. The area is re-visited with the aim to describe in more detail the geologic prerequisite and development of the palaeo–incisions as well as the timing of their subsequent infillings. The channels form distinctive features in the sedimentary bedrock along the outer limits of pre–Weichselian ice sheets, on average reaching depths into the bedrock of 50 m in the nearshore zone of Lithuania to 100 m along the slope to the Gotland depression in the west. The development of palaeo–incisions systems is governed by the easily eroded late Palaeozoic to Mesozoic bedrock of the present area. Only rare ocurrences of channels have been reported from the middle and lower parts of the Palaeozoic further west in the Baltic Sea. The present investigation supports a mechanism that the channels formed below the ice near the ice sheet margin by melt water erosion under high pressure. The channels start at random where a fracture in the ice develops forming outlet of water contained below the central part of the ice sheet. The channels often merge together in the direction of the ice margin, possibly gradually adapting to previous fracture systems in the bedrock. The investigated incisions were infilled prior to the advance of the Weichselian ice sheet and some have been reopened and repeatedly infilled.


Sign in / Sign up

Export Citation Format

Share Document