scholarly journals The Partition Dimension of a Path Graph

2021 ◽  
Vol 13 (2) ◽  
pp. 66
Author(s):  
Vivi Ramdhani ◽  
Fathur Rahmi

Resolving partition is part of graph theory. This article, explains about resolving partition of the path graph, with. Given a connected graph  and  is a subset of  writen . Suppose there is , then the distance between and  is denoted in the form . There is an ordered set of -partitions of, writen then  the representation of with respect tois the  The set of partitions ofis called a resolving partition if the representation of each  to  is different. The minimum cardinality of the solving-partition to  is called the partition dimension of G which is denoted by . Before getting the partition dimension of a path graph, the first step is to look for resolving partition of the graph. Some resolving partitions of path graph,  with ,  and  are obtained. Then, the partition dimension of the path graph which is the minimum cardinality of resolving partition, namely pd (Pn)=2Resolving partition is part of graph theory. This article, explains about resolving partition of the path graph, with. Given a connected graph  and  is a subset of  writen . Suppose there is , then the distance between and  is denoted in the form . There is an ordered set of -partitions of, writen then  the representation of with respect tois the  The set of partitions ofis called a resolving partition if the representation of each  to  is different. The minimum cardinality of the solving-partition to  is called the partition dimension of G which is denoted by . Before getting the partition dimension of a path graph, the first step is to look for resolving partition of the graph. Some resolving partitionsof path graph, with ,  and  are obtained. Then, the partition dimension of the path graph which is the minimum cardinality of resolving partition, namely.

Author(s):  
Liliek Susilowati ◽  
Imroatus Sa’adah ◽  
Utami Dyah Purwati

Some concepts in graph theory are resolving set, dominating set, and dominant metric dimension. A resolving set of a connected graph [Formula: see text] is the ordered set [Formula: see text] such that every pair of two vertices [Formula: see text] has the different representation with respect to [Formula: see text]. A Dominating set of [Formula: see text] is the subset [Formula: see text] such that for every vertex [Formula: see text] in [Formula: see text] is adjacent to at least one vertex in [Formula: see text]. A dominant resolving set of [Formula: see text] is an ordered set [Formula: see text] such that [Formula: see text] is a resolving set and a dominating set of [Formula: see text]. The minimum cardinality of a dominant resolving set is called a dominant metric dimension of [Formula: see text], denoted by [Formula: see text]. In this paper, we determine the dominant metric dimension of the joint product graphs.


2021 ◽  
Vol 40 (1) ◽  
pp. 1129-1135
Author(s):  
Kamran Azhar ◽  
Sohail Zafar ◽  
Agha Kashif ◽  
Zohaib Zahid

Fault-tolerant resolving partition is natural extension of resolving partitions which have many applications in different areas of computer sciences for example sensor networking, intelligent systems, optimization and robot navigation. For a nontrivial connected graph G (V (G) , E (G)), the partition representation of vertex v with respect to an ordered partition Π = {Si : 1 ≤ i ≤ k} of V (G) is the k-vector r ( v | Π ) = ( d ( v , S i ) ) i = 1 k , where, d (v, Si) = min {d (v, x) |x ∈ Si}, for i ∈ {1, 2, …, k}. A partition Π is said to be fault-tolerant partition resolving set of G if r (u|Π) and r (v|Π) differ by at least two places for all u ≠ v ∈ V (G). A fault-tolerant partition resolving set of minimum cardinality is called the fault-tolerant partition basis of G and its cardinality the fault-tolerant partition dimension of G denoted by P ( G ) . In this article, we will compute fault-tolerant partition dimension of families of tadpole and necklace graphs.


2018 ◽  
Vol 2 (2) ◽  
pp. 88
Author(s):  
Rokhana Ayu Solekhah ◽  
Tri Atmojo Kusmayadi

<p>Let <span class="math"><em>G</em></span> be a connected graph and let <span class="math"><em>u</em>, <em>v</em></span> <span class="math"> ∈ </span> <span class="math"><em>V</em>(<em>G</em>)</span>. For an ordered set <span class="math"><em>W</em> = {<em>w</em><sub>1</sub>, <em>w</em><sub>2</sub>, ..., <em>w</em><sub><em>n</em></sub>}</span> of <span class="math"><em>n</em></span> distinct vertices in <span class="math"><em>G</em></span>, the representation of a vertex <span class="math"><em>v</em></span> of <span class="math"><em>G</em></span> with respect to <span class="math"><em>W</em></span> is the <span class="math"><em>n</em></span>-vector <span class="math"><em>r</em>(<em>v</em>∣<em>W</em>) = (<em>d</em>(<em>v</em>, <em>w</em><sub>1</sub>), <em>d</em>(<em>v</em>, <em>w</em><sub>2</sub>), ..., </span> <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>n</em></sub>))</span>, where <span class="math"><em>d</em>(<em>v</em>, <em>w</em><sub><em>i</em></sub>)</span> is the distance between <span class="math"><em>v</em></span> and <span class="math"><em>w</em><sub><em>i</em></sub></span> for <span class="math">1 ≤ <em>i</em> ≤ <em>n</em></span>. The set <span class="math"><em>W</em></span> is a local metric set of <span class="math"><em>G</em></span> if <span class="math"><em>r</em>(<em>u</em> ∣ <em>W</em>) ≠ <em>r</em>(<em>v</em> ∣ <em>W</em>)</span> for every pair <span class="math"><em>u</em>, <em>v</em></span> of adjacent vertices of <span class="math"><em>G</em></span>. The local metric set of <span class="math"><em>G</em></span> with minimum cardinality is called a local metric basis for <span class="math"><em>G</em></span> and its cardinality is called a local metric dimension, denoted by <span class="math"><em>l</em><em>m</em><em>d</em>(<em>G</em>)</span>. In this paper we determine the local metric dimension of a <span class="math"><em>t</em></span>-fold wheel graph, <span class="math"><em>P</em><sub><em>n</em></sub></span> <span class="math"> ⊙ </span> <span class="math"><em>K</em><sub><em>m</em></sub></span> graph, and generalized fan graph.</p>


2020 ◽  
Vol 28 (3) ◽  
pp. 15-37
Author(s):  
Muhammad Ahsan ◽  
Zohaib Zahid ◽  
Sohail Zafar

AbstractLet G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.


2020 ◽  
Vol 18 (1) ◽  
pp. 237-248 ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero

Abstract A set W of vertices of a connected graph G strongly resolves two different vertices x, y ∉ W if either d G (x, W) = d G (x, y) + d G (y, W) or d G (y, W) = d G (y, x) + d G (x, W), where d G (x, W) = min{d(x,w): w ∈ W} and d(x,w) represents the length of a shortest x − w path. An ordered vertex partition Π = {U 1, U 2,…,U k } of a graph G is a strong resolving partition for G, if every two different vertices of G belonging to the same set of the partition are strongly resolved by some other set of Π. The minimum cardinality of any strong resolving partition for G is the strong partition dimension of G. In this article, we obtain several bounds and closed formulae for the strong partition dimension of some families of graphs and give some realization results relating the strong partition dimension, the strong metric dimension and the order of graphs.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950003
Author(s):  
RIDHO ALFARISI ◽  
DAFIK ◽  
ARIKA INDAH KRISTIANA ◽  
IKA HESTI AGUSTIN

We consider V, E are respectively vertex and edge sets of a simple, nontrivial and connected graph G. For an ordered set W = {w1, w2, w3, …, wk} of vertices and a vertex v ∈ G, the ordered r(v|W) = (d(v, w1), d(v, w2), …, d(v, wk)) of k-vector is representations of v with respect to W, where d(v, w) is the distance between the vertices v and w. The set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W. The metric dimension, denoted by dim(G) is min of |W|. Furthermore, the resolving set W of graph G is called non-isolated resolving set if there is no ∀v ∈ W induced by non-isolated vertex. While a non-isolated resolving number, denoted by nr(G), is the minimum cardinality of non-isolated resolving set in graph. In this paper, we study the non isolated resolving number of graph with any pendant edges.


2011 ◽  
Vol 03 (03) ◽  
pp. 357-368 ◽  
Author(s):  
A. P. SANTHAKUMARAN ◽  
T. JEBARAJ ◽  
S. V. ULLAS CHANDRAN

For a connected graph G of order n, an ordered set S = {u1, u2, …, uk} of vertices in G is a linear geodetic set of G if for each vertex x in G, there exists an index i, 1 ≤ i < k such that x lies on a ui - ui + 1 geodesic on G, and a linear geodetic set of minimum cardinality is the linear geodetic number gl(G). The linear geodetic numbers of certain standard graphs are obtained. It is shown that if G is a graph of order n and diameter d, then gl(G) ≤ n - d + 1 and this bound is sharp. For positive integers r, d and k ≥ 2 with r < d ≤ 2r, there exists a connected graph G with rad G = r, diam G = d and gl(G) = k. Also, for integers n, d and k with 2 ≤ d < n, 2 ≤ k ≤ n - d + 1, there exists a connected graph G of order n, diameter d and gl(G) = k. We characterize connected graphs G of order n with gl(G) = n and gl(G) = n - 1. It is shown that for each pair a, b of integers with 3 ≤ a ≤ b, there is a connected graph G with g(G) = a and gl(G) = b. We also discuss how the linear geodetic number of a graph is affected by adding a pendent edge to the graph.


10.37236/3474 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Ismael González Yero

We present a new style of metric generator in graphs. Specifically we introduce a metric generator based on a partition of the vertex set of a graph. The sets of the partition will work as the elements which will uniquely determine the position of each single vertex of the graph. A set $W$ of vertices of a connected graph $G$ strongly resolves two different vertices $x,y\notin W$ if either $d_G(x,W)=d_G(x,y)+d_G(y,W)$ or $d_G(y,W)=d_G(y,x)+d_G(x,W)$, where $d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}$. An ordered vertex partition $\Pi=\left\{U_1,U_2,...,U_k\right\}$ of a graph $G$ is a strong resolving partition for $G$ if every two different vertices of $G$ belonging to the same set of the partition are strongly resolved by some set of $\Pi$. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 479 ◽  
Author(s):  
Juan Wang ◽  
Lianying Miao ◽  
Yunlong Liu

Let G = ( V ( G ) , E ( G ) ) be a connected graph. An ordered set W ⊂ V ( G ) is a resolving set for G if every vertex of G is uniquely determined by its vector of distances to the vertices in W. The metric dimension of G is the minimum cardinality of a resolving set. In this paper, we characterize the graphs of metric dimension n − 3 by constructing a special distance matrix, called metric matrix. The metric matrix makes it so a class of graph and its twin graph are bijective and the class of graph is obtained from its twin graph, so it provides a basis for the extension of graphs with respect to metric dimension. Further, the metric matrix gives a new idea of the characterization of extremal graphs based on metric dimension.


CAUCHY ◽  
2016 ◽  
Vol 4 (3) ◽  
pp. 125
Author(s):  
Marsidi Marsidi ◽  
Dafik Dafik ◽  
Ika Hesti Agustin ◽  
Ridho Alfarisi

Let G be a simple, nontrivial, and connected graph.  is a representation of an ordered set of <em>k</em> distinct vertices in a nontrivial connected graph G. The metric code of a vertex <em>v</em>, where <em>, </em>the ordered  of <em>k</em>-vector is representations of <em>v</em> with respect to <em>W</em>, where  is the distance between the vertices <em>v</em> and <em>w<sub>i</sub></em> for 1≤ <em>i ≤k</em>.  Furthermore, the set W is called a local resolving set of G if  for every pair <em>u</em>,<em>v </em>of adjacent vertices of G. The local metric dimension ldim(G) is minimum cardinality of <em>W</em>. The local metric dimension exists for every nontrivial connected graph G. In this paper, we study the local metric dimension of line graph of special graphs , namely path, cycle, generalized star, and wheel. The line graph L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.


Sign in / Sign up

Export Citation Format

Share Document