vertex partition
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 1)

2022 ◽  
Vol 18 (1) ◽  
pp. 1-16
Author(s):  
Alessandra Graf ◽  
David G. Harris ◽  
Penny Haxell

An independent transversal (IT) in a graph with a given vertex partition is an independent set consisting of one vertex in each partition class. Several sufficient conditions are known for the existence of an IT in a given graph and vertex partition, which have been used over the years to solve many combinatorial problems. Some of these IT existence theorems have algorithmic proofs, but there remains a gap between the best existential bounds and the bounds obtainable by efficient algorithms. Recently, Graf and Haxell (2018) described a new (deterministic) algorithm that asymptotically closes this gap, but there are limitations on its applicability. In this article, we develop a randomized algorithm that is much more widely applicable, and demonstrate its use by giving efficient algorithms for two problems concerning the strong chromatic number of graphs.


2021 ◽  
Vol 4 (2) ◽  
pp. 48-51
Author(s):  
Rao Li ◽  

Let \(G = (X, Y; E)\) be a bipartite graph with two vertex partition subsets \(X\) and \(Y\). \(G\) is said to be balanced if \(|X| = |Y|\) and \(G\) is said to be bipancyclic if it contains cycles of every even length from \(4\) to \(|V(G)|\). In this note, we present spectral conditions for the bipancyclic bipartite graphs.


10.37236/9148 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Niranjan Balachandran ◽  
Deepanshu Kush

A bipartite graph $G(X,Y,E)$ with vertex partition $(X,Y)$ is said to have the Normalized Matching Property (NMP) if for any subset $S\subseteq X$ we have $\frac{|N(S)|}{|Y|}\geq\frac{|S|}{|X|}$. In this paper, we prove the following results about the Normalized Matching Property.  The random bipartite graph $\mathbb{G}(k,n,p)$ with $|X|=k,|Y|=n$, and $k\leq n<\exp(k)$, and each pair $(x,y)\in X\times Y$ being an edge in $\mathbb{G}$ independently with probability $p$ has $p=\frac{\log n}{k}$ as the threshold for NMP. This generalizes a classic result of Erdős-Rényi on the $\frac{\log n}{n}$ threshold for the existence of a perfect matching in $\mathbb{G}(n,n,p)$. A bipartite graph $G(X,Y)$, with $k=|X|\le |Y|=n$, is said to be Thomason pseudorandom (following A. Thomason (Discrete Math., 1989)) with parameters $(p,\varepsilon)$ if every $x\in X$ has degree at least $pn$ and every pair of distinct $x, x'\in X$ have at most $(1+\varepsilon)p^2n$ common neighbours. We show that Thomason pseudorandom graphs have the following property: Given $\varepsilon>0$ and $n\geq k\gg 0$, there exist functions $f,g$ with $f(x), g(x)\to 0$ as $x\to 0$, and sets $\mathrm{Del}_X\subset X, \  \mathrm{Del}_Y\subset Y$ with $|\mathrm{Del}_X|\leq f(\varepsilon)k,\ |\mathrm{Del}_Y|\leq g(\varepsilon)n$ such that $G(X\setminus \mathrm{Del}_X,Y\setminus \mathrm{Del}_Y)$ has NMP. Enroute, we prove an 'almost' vertex decomposition theorem: Every Thomason pseudorandom bipartite graph $G(X,Y)$ admits - except for a negligible portion of its vertex set - a partition of its vertex set into graphs that are spanned by trees that have NMP, and which arise organically through the Euclidean GCD algorithm. 


Author(s):  
Xiujun Zhang ◽  
Muhammad Kamran Siddiqui ◽  
Sana Javed ◽  
Lubna Sherin ◽  
Farah Kausar ◽  
...  

Background:: “Cerium oxide nanoparticles ( Aim and Objective:: The study“was aimed to analyze the chemical graph of crystal structure of Ceria Oxide(cuprite) Materials and Methods:: Chemical“graph theory plays an important role in modeling and designing any chemical structure. The topological indices are the numerical invariants of a molecular graph and are very useful for predicting their physical properties. For calculation, we have utilized the combinatorial processing strategy, edge partition technique, vertex partition strategy, analytic procedures, graph hypothetical tools, degree counting technique and entirety of degrees of neighbors technique. Moreover, Matlab programming have been utilized for the numerical computations and checks. We likewise utilized the maple for plotting these numerical outcomes.” Results:: We have“computed Heat of Formation and Entropy using degree based topological indices. More oreciously, our main results are based on some degree based topological indices, namely, the atom bond connectivity index Conclusion:: We discuss“these indices exhibited difference with the reported heat of formation and entropy of cuprite


Author(s):  
Irene Sciriha ◽  
Xandru Mifsud ◽  
James L. Borg
Keyword(s):  

2020 ◽  
Vol 12 (1) ◽  
pp. 137-157
Author(s):  
Prajakta Bharat Joshi ◽  
Mayamma Joseph

AbstractGiven a graph G = (V, E), with respect to a vertex partition 𝒫 we associate a matrix called 𝒫-matrix and define the 𝒫-energy, E𝒫 (G) as the sum of 𝒫-eigenvalues of 𝒫-matrix of G. Apart from studying some properties of 𝒫-matrix, its eigenvalues and obtaining bounds of 𝒫-energy, we explore the robust(shear) 𝒫-energy which is the maximum(minimum) value of 𝒫-energy for some families of graphs. Further, we derive explicit formulas for E𝒫 (G) of few classes of graphs with different vertex partitions.


2020 ◽  
Vol 374 ◽  
pp. 125032
Author(s):  
Yang Wang ◽  
Danjun Huang ◽  
Stephen Finbow

2020 ◽  
Vol 18 (1) ◽  
pp. 237-248 ◽  
Author(s):  
Dorota Kuziak ◽  
Ismael G. Yero

Abstract A set W of vertices of a connected graph G strongly resolves two different vertices x, y ∉ W if either d G (x, W) = d G (x, y) + d G (y, W) or d G (y, W) = d G (y, x) + d G (x, W), where d G (x, W) = min{d(x,w): w ∈ W} and d(x,w) represents the length of a shortest x − w path. An ordered vertex partition Π = {U 1, U 2,…,U k } of a graph G is a strong resolving partition for G, if every two different vertices of G belonging to the same set of the partition are strongly resolved by some other set of Π. The minimum cardinality of any strong resolving partition for G is the strong partition dimension of G. In this article, we obtain several bounds and closed formulae for the strong partition dimension of some families of graphs and give some realization results relating the strong partition dimension, the strong metric dimension and the order of graphs.


Sign in / Sign up

Export Citation Format

Share Document