scholarly journals METODE NUMERIK STEPEST DESCENT TERINDUKSI NEWTON DALAM PEMECAHAN MASALAH OPTIMISASI TANPA KENDALA

2018 ◽  
Vol 5 (3) ◽  
pp. 187-194
Author(s):  
Rukmono Budi Utomo

AbstrakPenelitian teoritis ini mengkaji mengenai metode numerik Stepest Descent yang terinduksi Newton. Penelitian ini dilakukan dengan cara memahami terlebih dahulu mengenai metode numerik Stepest Descent dan Newton, kemudian mengkonstruksi metode baru yang disebut dengan Stepest Descent terinduksi Newton. Pada makalah ini turut disertakan pula contoh perhitungan numerik antara ketiga metode tersebut beserta analisis perhitungannya. AbstractThis research is investigating numerical method of Steepest Descent inducted of Newton. Steps of this research can be described as follows: First, the author has to understand the definition and algorithm of Steepest Descent and Newton methods. After that, the second, author constructing the new method called by Steepest Descent inducted newton. In this paper, author also containing examples of numerical counting among that three methods and analyze them self.

2019 ◽  
Vol 10 (1) ◽  
pp. 15-20
Author(s):  
József András ◽  
József Kovács ◽  
Endre András ◽  
Ildikó Kertész ◽  
Ovidiu Bogdan Tomus

Abstract The bucket wheel excavator (BWE) is a continuous working rock harvesting device which removes the rock by means of buckets armoured with teeth, mounted on the wheel and which transfers rock on a main hauling system (generally a belt conveyor). The wheel rotates in a vertical plane and swings in the horizontal plane and raised / descended in the vertical plane by a boom. In this paper we propose a graphical-numerical method in order to calculate the power and energy requirements of the main harvesting structure (the bucket wheel) of the BWE. This approach - based on virtual models of the main working units of bucket wheel excavators and their working processes - is more convenient than those based on analytical formulas and simplification hypotheses, and leads to improved operation, reduced energy consumption, increased productivity and optimal use of available actuating power.


1969 ◽  
Vol 3 (2) ◽  
pp. 269-280 ◽  
Author(s):  
L. B. Kapp ◽  
P. H. Richards

The problem is to determine the electrical and thermal conductivities of high pressure are plasmas from measurements of the current—voltage characteristics of the are and a single radial temperature profile. A new numerical method is described together with the corresponding computer program. The latter is applied to some recent measurements on wall-stabilized nitrogen ares, covering the temperature range 4500—11,000 °K, for which radiation can be neglected, and the results are compared with those of other workers.


Sign in / Sign up

Export Citation Format

Share Document