scholarly journals Acceleration of aging effect of drained cyclic pre-shearing and high temperature consolidation on liquefaction resistance of sandy soils

2014 ◽  
Vol 9 (4) ◽  
pp. 707-719 ◽  
Author(s):  
Shigeru GOTO ◽  
Ikuo TOWHATA
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1427
Author(s):  
Xiaoming Wu ◽  
Chichun Hu

Utilization of waste corn stalks (CS) has seized extensive attention due to high annual output and hazardous impact of piling aside or direct combustion on environment. However, previously there has been a lot of emphasis on improvement of its energy efficiency as solid fuel while limited investigations are available which explore the possibility of applying corn stalks as performance enhancer in asphalt binder. The purpose of this study is to examine the potential of employing hydrochar as modifiers in asphalt binder by a series of experimental tests. In this study, two hydrochar were produced from corn stalks by a novel process called hydrothermal carbonization at a different reaction temperature. The two hydrochar and their responding hydrochar-modified asphalt (HCMA) were tested by chemical and rheological tests. Chemical analysis detected the interaction between hydrochar and binder factions, resulting in poor compatibility but satisfying anti-aging property. Even though hydrochar increased the viscosity of bitumen, implying worse workability, and caused poor storage stability, ameliorated performance of asphalt binder at high temperature by incorporating hydrochar was verified by various criteria such as higher performance grade (PG) failure temperature and lower non-recoverable creep compliance (Jnr). Moreover, higher reaction temperature makes hydrochar’s particles smaller and more homogeneous, which results in slightly lower enhanced high temperature performance, more satisfying workability, better storage stability, and greater anti-aging effect of hydrochar-modified asphalt. Eventually, this study provided a promising win-win solution to environment problems concerning corn stalk treatment and shortage of asphalt binder. Further exploration of methods to improve HCMA’s storage stability, real-scale corroboration on trial section and life cycle assessment of asphalt pavement containing hydrochar modifiers will be followed in the future.


2016 ◽  
Vol 837 ◽  
pp. 140-145
Author(s):  
Ivan Slavik

Geomaterials with typical low unit weight and high porosity are significantly prone to liquefaction as a result of dynamic – seismic load. Investigation of geomaterials that are prone to liquefaction due to seismic load can use certain SPT and CPT penetration tests. The method of investigating liquefaction caused by seismic activity was developed based on numerous penetration tests of sandy or silty–sandy soils and was elaborated in detail at the Workshop on Evaluation of Liquefaction Resistance of Soil, NCEER, Salk Lake City, USA, 1996. In the present paper, the results of penetration CPT test conducted at the ash impoundment in Zemianske Kostoľany are analyzed using methodology NCEER.


1998 ◽  
Vol 35 (3) ◽  
pp. 442-459 ◽  
Author(s):  
P K Robertson ◽  
CE (Fear) Wride

Soil liquefaction is a major concern for structures constructed with or on sandy soils. This paper describes the phenomena of soil liquefaction, reviews suitable definitions, and provides an update on methods to evaluate cyclic liquefaction using the cone penetration test (CPT). A method is described to estimate grain characteristics directly from the CPT and to incorporate this into one of the methods for evaluating resistance to cyclic loading. A worked example is also provided, illustrating how the continuous nature of the CPT can provide a good evaluation of cyclic liquefaction potential, on an overall profile basis. This paper forms part of the final submission by the authors to the proceedings of the 1996 National Center for Earthquake Engineering Research workshop on evaluation of liquefaction resistance of soils.Key words: cyclic liquefaction, sandy soils, cone penetration test


2009 ◽  
Vol 135 (8) ◽  
pp. 1032-1043 ◽  
Author(s):  
Yoichi Yamamoto ◽  
Masayuki Hyodo ◽  
Rolando P. Orense

Sign in / Sign up

Export Citation Format

Share Document