scholarly journals Analytical solution for statif bending analyses of functionally grades plates with porosities

2020 ◽  
Vol 15 (55) ◽  
Author(s):  
Slimane Merdaci ◽  
Adda Hadj Mostefa ◽  
Youcef Beldjelili ◽  
Mohamed Merazi ◽  
Sabrina Boutaleb ◽  
...  

The paper examines a static bending of porous functional plates (FGP) and rectangular plate solutions, based on an underlying high-order shear deformation theory. The proposed high-order shear deformation theory, as opposed to other theories, includes four unknowns. For this reason, a new shear strain function is considered. The technique of Navier is used in closed-form FGP solutions. Results of deflections and stresses are presented for simply supported border conditions. Current figures are contrasted with the non-poreous plate deflecting solutions and the literature's stresses. Effects of different parameters, including thickness, gradient index and porosity of FGM plates, are discussed.

Author(s):  
Param D. Gajbhiye ◽  
Vishisht Bhaiya ◽  
Yuwaraj M. Ghugal

In the present study, a 5th order shear deformation theory (5th OSDT) is presented for free vibration analysis of simply supported thick isotropic plates. Governing equations and boundary conditions are evaluated using the concept of virtual work. Numerical results for free vibration analysis include the effects of side to thickness and plate aspect ratios for simply supported thick isotropic plates. Non-dimensional bending mode frequencies, non-dimensional thickness shear mode frequencies and non-dimensional thickness stretch mode frequencies are obtained. Closed form analytical solutions for simply supported isotropic thick plates subjected to single sinusoidal distributed loads are obtained for comparison purpose. The problems considered in this study are solved using MATLAB software. Non-dimensional bending frequencies and non-dimensional thickness shear mode frequencies obtained through the 5th OSDT match well with the exact analytical and exponential shear deformation theory (ESDT) results. Further, the non-dimensional thickness stretch mode frequencies are found to be imaginary.


2020 ◽  
Vol 10 (12) ◽  
pp. 4190
Author(s):  
Aleksandar Radaković ◽  
Dragan Čukanović ◽  
Gordana Bogdanović ◽  
Milan Blagojević ◽  
Blaža Stojanović ◽  
...  

Functionally graded square and rectangular plates of different thicknesses placed on the elastic foundation modeled according to the Winkler-Pasternak theory have been studied. The thermal and mechanical characteristics, apart from Poisson’s ratio, are considered to continuously differ through the thickness of the studied material as stated in a power-law distribution. A mathematical model of functionally graded plate which include interaction with elastic foundation is defined. The equilibrium and stability equations are derived using high order shear deformation theory that comprises various kinds of shape function and the von Karman nonlinearity. A new analytically integrable shape function has been introduced. Hamilton’s principle has been applied with the purpose of acquiring the equations of motion. An analytical method for identifying both natural frequencies and critical buckling temperature for cases of linear and nonlinear temperature change through the plate thickness has been established. In order to verify the derived theoretical results on numerical examples, an original program code has been implemented within software MATLAB. Critical buckling temperature and natural frequencies findings are shown below. Previous scientific research and papers confirms that presented both the theoretical formulation and the numerical results are accurate. The comparison has been made between newly established findings based on introduced shape function and the old findings that include 13 different shape functions available in previously published articles. The final part of the research provides analysis and conclusions related to the impact of the power-law index, foundation stiffness, and temperature gradient on critical buckling temperature and natural frequencies of the functionally graded plates.


2019 ◽  
Vol 969 ◽  
pp. 116-121
Author(s):  
Ch. Naveen Reddy ◽  
M. Bhargav ◽  
T. Revanth

This work investigates the complete analytical solution for functionally graded material (FGM) plates incorporated with smart material. The odjective of the present work is to determine bending characteristics of piezoelectric FGM plates with different geometrical parameters, voltages and boundary conditions for electro-mechanical loading. In this work an analytical formulation based on higher order shear deformation theory (HSDT) is presented for the piezoelectric FGM plates. The solutions are obtained in closed from using Navier’s technique for piezoelectric FGM plates a specific type of simply supported boundary conditions and pc code have been developed to find out the deflections and stresses for various parameters. All the solutions are plotted against aspect proportion, side to thickness proportion as a function of material variety parameter (n) and thickness coordinate for different voltages. The significant trends from the results are obtained.


2014 ◽  
Vol 680 ◽  
pp. 284-287
Author(s):  
Jiang Wu ◽  
Song Xiang

A trigonometric shear deformation theory is presented to analyze the free vibration of functionally graded plate. The Navier-type analytical method is used to solve the governing differential equations. The natural frequencies of simply supported functionally graded plates are calculated and compared with the available results.


Sign in / Sign up

Export Citation Format

Share Document