scholarly journals Some Results on Nearly Cosymplectic Manifolds

Author(s):  
Nesip Aktan ◽  
Adile Dündar
2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Siraj Uddin ◽  
S. H. Kon ◽  
M. A. Khan ◽  
Khushwant Singh

We study warped product semi-invariant submanifolds of nearly cosymplectic manifolds. We prove that the warped product of the type is a usual Riemannian product of and , where and are anti-invariant and invariant submanifolds of a nearly cosymplectic manifold , respectively. Thus we consider the warped product of the type and obtain a characterization for such type of warped product.


2019 ◽  
Vol 12 (06) ◽  
pp. 2040012 ◽  
Author(s):  
Mustafa Yıldırım ◽  
Gülhan Ayar

We investigate nearly cosymplectic manifolds with [Formula: see text]-nullity distribution. Also, we consider pseudo-projectively flat [Formula: see text]-nearly cosymplectic manifold and study [Formula: see text] condition.


Author(s):  
Fortuné Massamba ◽  
Samuel Ssekajja

Attention is drawn to some distributions on ascreen Quasi-Generalized Cauchy-Riemannian (QGCR) null submanifolds in an indefinite nearly cosymplectic manifold. We characterize totally umbilical and irrotational ascreen QGCR-null submanifolds. We finally discuss the geometric effects of geodesity conditions on such submanifolds.


2017 ◽  
Vol 197 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Antonio De Nicola ◽  
Giulia Dileo ◽  
Ivan Yudin

2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Satya Prakash Yadav ◽  
Shyam Kishor

The present paper focuses on the study of noninvariant hypersurfaces of a nearly trans-Sasakian manifold equipped with(f,g,u,v,λ)-structure. Initially some properties of this structure have been discussed. Further, the second fundamental forms of noninvariant hypersurfaces of nearly trans-Sasakian manifolds and nearly cosymplectic manifolds with(f,g,u,v,λ)-structure have been calculated providedfis parallel. In addition, the eigenvalues offhave been found and proved that a noninvariant hypersurface with(f,g,u,v,λ)-structure of nearly cosymplectic manifold with contact structure becomes totally geodesic. Finally the paper has been concluded by investigating the necessary condition for totally geodesic or totally umbilical noninvariant hypersurface with(f,g,u,v,λ)-structure of a nearly trans-Sasakian manifold.


2017 ◽  
Vol 50 (1) ◽  
pp. 231-238
Author(s):  
Eugenia Loiudice

Abstract In this work we consider a class of contact manifolds (M, η) with an associated almost contact metric Structure (ϕ, ξ, η, g). This class contains, for example, nearly cosymplectic manifolds and the manifolds in the class C9 ⊕ C10 defined by Chinea and Gonzalez. All manifolds in the class considered turn out to have dimension 4n + 1. Under the assumption that the sectional curvature of the horizontal 2-planes is constant at one point, we obtain that these manifolds must have dimension 5.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1622
Author(s):  
Siraj Uddin ◽  
M. Z. Ullah

In the early 20th century, B.-Y. Chen introduced the concept of CR-warped products and obtained several fundamental results, such as inequality for the length of second fundamental form. In this paper, we obtain B.-Y. Chen’s inequality for CR-slant warped products in nearly cosymplectic manifolds, which are the more general classes of manifolds. The equality case of this inequality is also investigated. Furthermore, the inequality is discussed for some important subclasses of CR-slant warped products.


2020 ◽  
Vol 5 (6) ◽  
pp. 6313-6324
Author(s):  
Rifaqat Ali ◽  
◽  
Nadia Alluhaibi ◽  
Khaled Mohamed Khedher ◽  
Fatemah Mofarreh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document