geometric effects
Recently Published Documents


TOTAL DOCUMENTS

412
(FIVE YEARS 71)

H-INDEX

38
(FIVE YEARS 4)

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Yeon-Bin Choi ◽  
Naoyoshi Nunotani ◽  
Kunimitsu Morita ◽  
Nobuhito Imanaka

Pt/CeO2-ZrO2-Bi2O3-PbO/SBA-16 (SBA-16: Santa Barbara Amorphous No. 16) catalysts were synthesized to produce hydroxypyruvic acid by glycerol oxidation. In the catalysts, the introduction of PbO into CeO2-ZrO2-Bi2O3 improved the oxygen release and storage abilities owing to the synergistic redox reaction of Pb2+/4+ and Ce3+/4+, which facilitated the oxidation ability of Pt. In addition, the oxidation of the secondary OH group in glycerol might be accelerated by the geometric effects of glycerol, Pt, and Bi3+ or Pb2+/4+. Furthermore, the moderate reaction conditions such as room temperature and open-air atmosphere enabled the suppression of further oxidation of hydroxypyruvic acid. The highest catalytic activity was obtained for 7 wt% Pt/16 wt% Ce0.60Zr0.15Bi0.20Pb0.05O2−δ/SBA-16, which provided a hydroxypyruvic acid yield maximum of 24.6%, after the reaction for 6 h at 30 °C in atmospheric air.


2021 ◽  
pp. 115075
Author(s):  
Rodrigo José da Silva ◽  
Júlio Cesar dos Santos ◽  
Rodrigo Teixeira Santos Freire ◽  
Fabiano Bianchini Batista ◽  
Túlio Hallak Panzera ◽  
...  

2021 ◽  
Vol 133 (1029) ◽  
pp. 114503
Author(s):  
J. Brendan Hagan ◽  
George Rieke ◽  
Ori D. Fox ◽  
Alberto Noriega-Crespo ◽  
Dean C. Hines ◽  
...  

Abstract We evaluate the hit rate of cosmic rays and their daughter particles on the Si:As IBC detectors in the IRAC instrument on the Spitzer Space Telescope. The hit rate follows the ambient proton flux closely, but the hits occur at more than twice the rate expected just from this flux. Toward large amplitudes, the size distribution of hits by single-charge particles (muons) follows the Landau Distribution. The amplitudes of the hits are distributed to well below the energy loss of a traditional “average minimum-ionizing proton” as a result of statistical fluctuations in the ionization loss within the detectors. Nonetheless, hits with amplitudes less than a few hundred electrons are rare; this places nearly all hits in an amplitude range that is readily identified given the read noises of modern solid-state detectors. The spread of individual hits over multiple pixels is dominated by geometric effects, i.e., the range of incident angles, but shows a modest excess probably due to: (1) showering and scattering of particles; (2) the energy imparted on the ionization products by the energetic protons; and (3) interpixel capacitance. Although this study is focused on a specific detector type, it should have general application to operation of modern solid-state detectors in space.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Shintaro Takayoshi ◽  
Jianda Wu ◽  
Takashi Oka

We study the tunneling mechanism of nonlinear optical processes in solids induced by strong coherent laser fields. The theory is based on an extension of the Landau-Zener model with nonadiabatic geometric effects. In addition to the rectification effect known previously, we find two effects, namely perfect tunneling and counterdiabaticity at fast sweep speed. We apply this theory to the twisted Schwinger effect, i.e., nonadiabatic pair production of particles by rotating electric fields, and find a nonperturbative generation mechanism of the opto-valley polarization and photo-current in Dirac and Weyl fermions.


2021 ◽  
Vol 16 (6) ◽  
pp. 066008
Author(s):  
Ahmed A Hussein ◽  
Saad A Ragab ◽  
Muhammad R Hajj ◽  
Mayuresh J Patil
Keyword(s):  

2021 ◽  
Vol 18 (5) ◽  
pp. 681-690
Author(s):  
Minglei Zhang ◽  
Yue Yang ◽  
Linsheng Gao

Abstract To address the problem of the concrete filling body (CFB) force failing to reach test strength in remaining roadways, the weakening effects due to aspect ratio and dimensional parameters on the actual CFB strength were investigated in this study. The geometric effects of CFB (including hoop and size effects) as well as the geometric effect coefficient determination method were analysed. Through laboratory tests and PFC numerical simulations, the hoop and size effect coefficients of the CFB in the Gaohe Coal Mine were studied. Furthermore, the calculation equations of actual strength and bearing capacity of the CFB were derived. Regarding the filling body failure and coal deformation in the remaining roadway located at the No. W1319 working face, the actual bearing capacity of CFB and surrounding rock stability during secondary exploitation were theoretically studied. The investigation suggests the adoption of a grouting reinforcement scheme for surrounding rock. The field applications performed have demonstrated that the deformation control effect in the remaining-roadway surrounding rock was effectively improved during second mining and the filling body beside the roadway suffered no additional damage. Studying the geometric effect of CFB can provide some theoretical guidance and industrial significance to accurately identify the filling body strength and reduce the failure risk of surrounding rock in remaining roadways.


Author(s):  
Nicholas J. Lutsko ◽  
Momme C. Hell

AbstractAnnular modes are the leading mode of variability in extratropical atmospheres, and a key source of predictability at mid-latitudes. Previous studies of annular modes have primarily used dry atmospheric models, so that moisture’s role in annular mode dynamics is still unclear. In this study, a moist two-layer quasi-geostrophic channel model is used to study the effects of moisture on annular mode persistence. Using a channel model allows moisture’s direct effects to be studied, rather than changes in persistence due to geometric effects associated with shifts in jet latitude on the sphere. Simulations are performed in which the strength of latent heat release is varied, to investigate how annular mode persistence responds as precipitation becomes a leading term in the thermodynamic budget. At short lags (<20 model days ≈ 4 Earth days), moisture increases annular mode persistence, reflecting weaker eddy activity that is less effective at disrupting zonal-mean wind anomalies. Comparisons to dry simulations with weaker mean flows demonstrate that moisture is particularly effective at damping high frequency eddies, further enhancing short lag persistence. At long lags (>20 model days), moisture weakly increases persistence, though it decreases the amplitudes of low frequency annular mode anomalies. In the most realistic simulation, the greater short-lag persistence increases the e-folding time of the zonal index by 21 model days (≈4 Earth days). Moisture also causes a transition to propagating variability, though this does not seem to affect the leading mode’s persistence.


Sign in / Sign up

Export Citation Format

Share Document