scholarly journals Analysis, Design, and Optimisation of an Electromagnetic Energy Harvester

2021 ◽  
Author(s):  
Uchenna Diala ◽  
Yiling Lu ◽  
Amar Bousbaine

One of two major limitations of a vibration energy harvester (VEH), concerns its limited performance due to its confined physical enclosure. The maximum span realizable is attained at a specific excitation level. This excitation level provides the maximum energy harvested by the VEH device. Due to span constraints, VEHs are designed to operate at the maximum span achievable at the maximum excitation level existing within the region of interest. In this study, a constrained optimisation problem (for the VEH) is formulated and investigated. This paper focuses on the analysis, design and optimisation of a nonlinear VEH device.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Devarajan Kaliyannan

Abstract Vibration energy harvester (VEH) has proven to be a favorable potential technique to supply continuous energy from ambient vibrations and its performance is greatly influenced by the design of potential structures. A snap-through mechanism is used in an electromagnetic energy harvester to improve its effectiveness. It mainly comprises of three springs that are configured so that the potential energy of the system has two stable equilibrium points. In this work, a harmonically base excited snap-through electromagnetic vibration energy harvester is investigated by analytical and semi-analytical method. The approximate analytical outcomes are qualitatively and quantitatively supported by semi-analytical method using multi-term harmonic balance method (MHBM).The bifurcation diagram of response current shows that snap-through electromagnetic vibration energy harvesters exhibits periodic intrawell, interwell and chaotic motion when the system parameters are varied. The influence of system parameters on the response of snap-through electromagnetic vibration energy harvester are examined. Nonlinearity produced by the snap-through oscillator improves energy harvesting so that the snap-through electromagnetic energy harvester can outperform the linear energy harvester in the similar size under harmonic excitation. A fitness function was formulated and optimization of the selected parameters was done using genetic algorithm. The parametric optimization leads to a considerable improvement in the harvested current from the system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 201-210
Author(s):  
Yoshikazu Tanaka ◽  
Satoru Odake ◽  
Jun Miyake ◽  
Hidemi Mutsuda ◽  
Atanas A. Popov ◽  
...  

Energy harvesting methods that use functional materials have attracted interest because they can take advantage of an abundant but underutilized energy source. Most vibration energy harvester designs operate most effectively around their resonant frequency. However, in practice, the frequency band for ambient vibrational energy is typically broad. The development of technologies for broadband energy harvesting is therefore desirable. The authors previously proposed an energy harvester, called a flexible piezoelectric device (FPED), that consists of a piezoelectric film (polyvinylidene difluoride) and a soft material, such as silicon rubber or polyethylene terephthalate. The authors also proposed a system based on FPEDs for broadband energy harvesting. The system consisted of cantilevered FPEDs, with each FPED connected via a spring. Simply supported FPEDs also have potential for broadband energy harvesting, and here, a theoretical evaluation method is proposed for such a system. Experiments are conducted to validate the derived model.


2018 ◽  
Vol 138 (5) ◽  
pp. 185-190
Author(s):  
Meng Su ◽  
Dai Kobayashi ◽  
Nobuyuki Takama ◽  
Beomjoon Kim

2021 ◽  
Vol 30 (2) ◽  
pp. 299-308
Author(s):  
Anxin Luo ◽  
Yulong Zhang ◽  
Xinge Guo ◽  
Yan Lu ◽  
Chengkuo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document