polyvinylidene difluoride
Recently Published Documents


TOTAL DOCUMENTS

218
(FIVE YEARS 52)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 30 (1) ◽  
pp. 605-619
Author(s):  
Khairul Azman Ahmad ◽  
Noramalina Abdullah ◽  
Mohamad Faizal Abd Rahman ◽  
Muhammad Khusairi Osman ◽  
Rozan Boudville

Piezoelectric energy harvesting is the process of extracting electrical energy using energy harvester devices. Any stress in the piezoelectric material will generate induced voltage. Previous energy harvester device with stiff cantilever beam was generated low harvested energy. A flexural piezoelectric energy harvester is proposed to improve the generated harvesting energy. Polyvinylidene difluoride is a polymer piezoelectric material attached to a flexible circuit made of polyimide. Four interdigitated electrode circuits were designed and outsourced for fabrication. The polyvinylidene difluoride was then attached to the interdigitated electrode circuit, and a single clear adhesive tape was used to bind them. Four piezoelectric energy harvesters and ultrasonic ceramic generators were experimentally tested using a sieve shaker. The sieve shaker contains a two-speed oscillator, with M1=0.025 m/s and M2=0.05 m/s. It was used to oscillate the energy harvester devices. The resulting induced voltages were then measured. Design 4, with the widest width of electrode fingers and the widest gap between electrode fingers, had the highest power generated at an output load of 0.745 µW with the M2 oscillation speed. The oscillation speed of the sieve shaker impacted the energy harvester devices as a higher oscillation speed gave higher generated power.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Sri Mulyati ◽  
Sri Aprilia ◽  
Syawaliah Muchtar ◽  
Yanna Syamsuddin ◽  
Cut Meurah Rosnelly ◽  
...  

Potential use of tannic acid (TA) as an additive for fabrication of polyvinylidene difluoride (PVDF) membrane was investigated. The TA was introduced by blending into the dope solution with varying concentrations of 0, 1, 1.5, and 2 wt%. The prepared membranes were characterized and evaluated for filtration of humic acid (HA) solution. The stability of the membrane under harsh treatment was also evaluated by one-week exposure to acid and alkaline conditions. The results show that TA loadings enhanced the resulting membrane properties. It increased the bulk porosity, water uptake, and hydrophilicity, which translated into improved clean water flux from 15.4 L/m2.h for the pristine PVDF membrane up to 3.3× for the TA-modified membranes with the 2 wt% TA loading. The flux recovery ratio (FRR) of the TA-modified membranes (FRRs = 78–83%) was higher than the pristine one (FRR = 58.54%), with suitable chemical stability too. The improved antifouling property for the TA-modified membranes was attributed to their enhanced hydrophilicity thanks to improved morphology and residual TA in the membrane matric.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 77
Author(s):  
Kaidong Yang ◽  
Andrea Cioncolini ◽  
Mostafa R. A. Nabawy ◽  
Alistair Revell

This paper presents results from a practical assessment of the endurance of an inverted flag energy harvester, tested over multiple days in a wind tunnel to provide first insights into flapping fatigue and failure. The inverted flag is a composite bimorph, composed of PVDF (polyvinylidene difluoride) strips combined with a passive metallic core to provide sufficient stiffness. The flag, derived from an earlier, more extensive study, flaps with a typical amplitude of ~120 degrees and a frequency of ~2 Hz, generating a constant power of ~0.09 mW in a wind velocity of 6 m/s. The flag was observed to complete ~5×105 cycles before failure, corresponding to ~70 h of operation. The energy generated over this lifespan is estimated to be sufficient to power a standard low-power temperature sensor for several months at a sampling rate of one sample/minute, which would be adequate for applications such as wildfire detection, environmental monitoring, and agriculture management. This study indicates that structural fatigue may present a practical obstacle to the wider development of this technology, particularly in the context of their usual justification as a ‘deploy and forget’ alternative to battery power. Further work is required to improve the fatigue resistance of the flag material.


2021 ◽  
Author(s):  
Ayesha Sultana ◽  
Md. Mehebub Alam ◽  
Eleni Pavlopoulou ◽  
Eduardo Solano ◽  
Magnus Berggren ◽  
...  

Abstract Internet-of-everything (IoE) is defined as networked connections of things, people, data and processes. IoE nodes, preferably shaped as printed flexible systems, serves as the frontier outpost of the Internet and comprises devices to record and regulate states and functions. To power distributed IoE nodes in an ecofriendly manner, technology to scavenge energy from ambience and self-powered devices are developed. For this, piezoelectricity is regarded as a key-property, however current technology typically based on polyvinylidene difluoride (PVDF) co-polymers, are expensive and produced via toxic protocols. We report piezoelectric characteristics of electrochemically poled cellulose nanofiber (CNFs) thin films processed from water dispersions. Poling these films at humid conditions cause breaking and reorientation of CNF segments, which results in enhanced crystal alignment rendering the resulting material piezoelectric. Generators based on poled CNF show similar piezoelectric voltage and coefficient, here measured to d33 = 46 pm/V, as for devices including PVDF copolymer layers of similar thickness. Our findings promise for low cost and printable ecofriendly piezoelectric-powered IoE nodes.


Author(s):  
Sahrish Khatri ◽  
Syed Tufail Hussain Sherazi ◽  
Zeeshan Khatri ◽  
Sarfaraz Ahmed Mahesar ◽  
Sirajuddin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5578
Author(s):  
Tomáš Kazda ◽  
Dominika Capková ◽  
Kamil Jaššo ◽  
Andrea Fedorková Straková ◽  
Elena Shembel ◽  
...  

Lithium-sulfur batteries are one of the most promising battery systems nowadays. However, this system is still not suitable for practical application because of the number of shortcomings that limit its cycle life. One of the main problems related to this system is the volumetric change during cycling. This deficiency can be compensated by using the appropriate binder. In this article, we present the influence of a water-soluble binder carrageenan on the electrochemical properties of the Li-S battery. The electrode with a carrageenan binder provides good stability during cycling and at high C-rates. Electrochemical testing was also carried out with a small prototype pouch cell with a capacity of 16 mAh. This prototype pouch cell with the water-based carrageenan binder showed lower self-discharge and low capacity drop. Capacity decreased by 7% after 70 cycles.


2021 ◽  
Vol 130 (8) ◽  
pp. 085107
Author(s):  
Moolchand Sharma ◽  
Gurpreet Singh ◽  
Rahul Vaish

Sign in / Sign up

Export Citation Format

Share Document