Fate and contribution of induced pluripotent stem cell-derived neurospheres transplanted with nerve conduits to promoting peripheral nerve regeneration in mice

2021 ◽  
pp. 1-11
Author(s):  
Takuya Yokoi ◽  
Takuya Uemura ◽  
Kiyohito Takamatsu ◽  
Kosuke Shintani ◽  
Ema Onode ◽  
...  

BACKGROUND: We previously demonstrated that a bioabsorbable nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres accelerated peripheral nerve regeneration in mice. OBJECTIVE: We examined the fate and utility of iPSC-derived neurospheres transplanted with nerve conduits for the treatment of sciatic nerve gaps in mice. METHODS: Complete 5 mm defects were created in sciatic nerves and reconstructed using nerve conduits that were either uncoated or coated with mouse iPSC-derived neurospheres. The survival of the neurospheres on the nerve conduits was tracked using an in vivo imaging. The localization of the transplanted cells and regenerating axons was examined histologically. The gene expression levels in the nerve conduits were evaluated. RESULTS: The neurospheres survived for at least 14 days, peaking at 4–7 days after implantation. The grafted neurospheres remained as Schwann-like cells within the nerve conduits and migrated into the regenerated axons. The expression levels of ATF3, BDNF, and GDNF in the nerve conduit coated with neurospheres were upregulated. CONCLUSIONS: Mouse iPSC-derived neurospheres transplanted with nerve conduits for the treatment of sciatic nerve defects in mice migrated into regenerating axons, survived as Schwann-like cells, and promoted axonal growth with an elevation in the expression of nerve regeneration-associated trophic factors.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ema Onode ◽  
Takuya Uemura ◽  
Kiyohito Takamatsu ◽  
Takuya Yokoi ◽  
Kosuke Shintani ◽  
...  

AbstractPeripheral nerve regeneration using nerve conduits has been less effective than autogenous nerve grafts. To overcome this hurdle, we developed a tissue-engineered nerve conduit coated with mouse induced pluripotent stem cell (iPSC)-derived neurospheres, for the first time, which accelerated nerve regeneration in mice. We previously demonstrated the long-term efficacy and safety outcomes of this hybrid nerve conduit for mouse peripheral nerve regeneration. In this study, we investigated the therapeutic potential of nerve conduits coated with human iPSC (hiPSC)-derived neurospheres in rat sciatic nerve defects, as a translational preclinical study. The hiPSC-derived quaternary neurospheres containing neural stem/progenitor cells were three-dimensionally cultured within the nerve conduit (poly l-lactide and polycaprolactone copolymer) for 14 days. Complete 5-mm defects were created as a small size peripheral nerve defect in sciatic nerves of athymic nude rats and reconstructed with nerve conduit alone (control group), nerve conduits coated with hiPSC-derived neurospheres (iPS group), and autogenous nerve grafts (autograft group) (n = 8 per group). The survival of the iPSC-derived neurospheres was continuously tracked using in vivo imaging. At 12 weeks postoperatively, motor and sensory function and histological nerve regeneration were evaluated. Before implantation, the hiPSC-derived quaternary neurospheres that three-dimensional coated the nerve conduit were differentiated into Schwann-like cells. The transplanted hiPSC-derived neurospheres survived for at least 56 days after implantation. The iPS group showed non-significance higher sensory regeneration than the autograft group. Although there was no actual motor functional nerve regeneration in the three groups: control, iPS, and autograft groups, the motor function in the iPS group recovered significantly better than that in the control group, but it did not recover to the same level as that in the autograft group. Histologically, the iPS group demonstrated significantly higher axon numbers and areas, and lower G-ratio values than the control group, whereas the autograft group demonstrated the highest axon numbers and areas and the lowest G-ratio values. Nerve conduit three-dimensionally coated with hiPSC-derived neurospheres promoted axonal regeneration and functional recovery in repairing rat sciatic nerve small size defects. Transplantation of hiPSC-derived neurospheres with nerve conduits is a promising clinical iPSC-based cell therapy for the treatment of peripheral nerve defects.


2012 ◽  
Vol 419 (1) ◽  
pp. 130-135 ◽  
Author(s):  
Takuya Uemura ◽  
Kiyohito Takamatsu ◽  
Mikinori Ikeda ◽  
Mitsuhiro Okada ◽  
Kenichi Kazuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document