Fuzzy-PID controller with variable universe for tillage depth control on tractor-implement

Author(s):  
Qiang Gao ◽  
Zhixiong Lu ◽  
Jinlin Xue ◽  
Huisong Gao ◽  
Dymang Sar
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuzhong Wang ◽  
Min Wei ◽  
Xue Hu ◽  
Minghong Jiang ◽  
Lixin Zhang

It is a promising heat supply strategy to use induction heating for the pipe lining process, but temperature control is hindering its application. In this study, we designed the variable universe fuzzy PID controller, and the lining induction heating system model was used to verify its performance. First, the transfer function parameters of the lining induction heating system are obtained by the step response method. Then, a point-by-point convergent interpolator is established through the contraction-expansion factors to realize the adaptive expansion of the fuzzy universe. Finally, the performance of PID, fuzzy PID, and variable universe fuzzy PID are compared through simulation experiments, and the ability of the controller to resist disturbance is verified by adding interference. The results show that the variable universe fuzzy PID controller can greatly improve the performance of fuzzy PID in response speed and settle time. The average stability error is smaller than PID and fuzzy PID control. It can meet the speed and accuracy requirements of the lining induction heating system. This research can be used as a reference for induction heating precise control and evidence that the variable universe fuzzy PID control can satisfy the lining induction heating process.


2012 ◽  
Vol 233 ◽  
pp. 66-71 ◽  
Author(s):  
Shi Xing Zhu ◽  
Chan Juan Chen

Aircraft landing gear shock system model was established, The system vibration differential equation and state-space equation were deserved。Based on the general fuzzy PID controller, the idea of fuzzy PID controller and its application in shock absorber system were studied. Based on MATLAB, the system simulation model was established, and the fuzzy PID control of semi-active suspension is analyzed compared to variable universe fuzzy PID control. The results show that the variable universe fuzzy PID control had better control effect.


Author(s):  
Deepak Kumar Lal ◽  
Ajit Kumar Barisal

Background: Due to the increasing demand for the electrical power and limitations of conventional energy to produce electricity. Methods: Now the Microgrid (MG) system based on alternative energy sources are used to provide electrical energy to fulfill the increasing demand. The power system frequency deviates from its nominal value when the generation differs the load demand. The paper presents, Load Frequency Control (LFC) of a hybrid power structure consisting of a reheat turbine thermal unit, hydropower generation unit and Distributed Generation (DG) resources. Results: The execution of the proposed fractional order Fuzzy proportional-integral-derivative (FO Fuzzy PID) controller is explored by comparing the results with different types of controllers such as PID, fractional order PID (FOPID) and Fuzzy PID controllers. The controller parameters are optimized with a novel application of Grasshopper Optimization Algorithm (GOA). The robustness of the proposed FO Fuzzy PID controller towards different loading, Step Load Perturbations (SLP) and random step change of wind power is tested. Further, the study is extended to an AC microgrid integrated three region thermal power systems. Conclusion: The performed time domain simulations results demonstrate the effectiveness of the proposed FO Fuzzy PID controller and show that it has better performance than that of PID, FOPID and Fuzzy PID controllers. The suggested approach is reached out to the more practical multi-region power system. Thus, the worthiness and adequacy of the proposed technique are verified effectively.


2021 ◽  
pp. 103564
Author(s):  
Wenjie Zeng ◽  
Qingfeng Jiang ◽  
Yinuo Liu ◽  
Shoujun Yan ◽  
Guangchun Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document