A new backoff algorithm for a low power consumption MAC protocol in IR-UWB based WSN

2018 ◽  
Vol 24 (3) ◽  
pp. 175-185
Author(s):  
Anouar Darif ◽  
Driss Aboutajdine ◽  
Rachid Saadane
2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

2014 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Anouar Darif ◽  
Rachid Saadane ◽  
Driss Aboutajdine

Synchronization is an important issue in multi hops Wireless Sensor Networks (WSN). Such networks are known by their limited resources of energy, storage, computation, and bandwidth. In addition if the networks entities are deployed with high density, it makes the synchronization mandatory for these networks. Impulse Radio Ultra Wide Band (IR-UWB) technology is a promising solution for this kind of networks due to its various advantages such as its robustness to severe multipath fading even in indoor environments, its low cost, low complexity, and low power consumption. To exploit the specific features of this technology, we need a convenient MAC protocol. WideMac was presented as a new low power consumption MAC protocol designed for WSN using IR-UWB transceivers. Because of the luck of synchronization in this protocol, this paper presents a solution for the synchronization problem especially in the case of no communication between the Network’s nodes. To implement and evaluate the proposed synchronization mechanism, we used MiXiM platform under OMNet++ Simulator.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document