Deep autoencoder-based community detection in complex networks with particle swarm optimization and continuation algorithms

2021 ◽  
pp. 1-17
Author(s):  
Mohammed Al-Andoli ◽  
Wooi Ping Cheah ◽  
Shing Chiang Tan

Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the problem of community detection. However, existing models in the literature are trained based on gradient descent optimization with the backpropagation algorithm, which is known to converge to local minima and prove inefficient, especially in big data scenarios. To tackle these drawbacks, this work proposed a novel deep autoencoder with Particle Swarm Optimization (PSO) and continuation algorithms to reveal community structures in complex networks. The PSO and continuation algorithms were utilized to avoid the local minimum and premature convergence, and to reduce overall training execution time. Two objective functions were also employed in the proposed model: minimizing the cost function of the autoencoder, and maximizing the modularity function, which refers to the quality of the detected communities. This work also proposed other methods to work in the absence of continuation, and to enable premature convergence. Extensive empirical experiments on 11 publically-available real-world datasets demonstrated that the proposed method is effective and promising for deriving communities in complex networks, as well as outperforming state-of-the-art deep learning community detection algorithms.

2020 ◽  
Vol 10 (9) ◽  
pp. 3126
Author(s):  
Desheng Lyu ◽  
Bei Wang ◽  
Weizhe Zhang

With the development of network technology and the continuous advancement of society, the combination of various industries and the Internet has produced many large-scale complex networks. A common feature of complex networks is the community structure, which divides the network into clusters with tight internal connections and loose external connections. The community structure reveals the important structure and topological characteristics of the network. The detection of the community structure plays an important role in social network analysis and information recommendation. Therefore, based on the relevant theory of complex networks, this paper introduces several common community detection algorithms, analyzes the principles of particle swarm optimization (PSO) and genetic algorithm and proposes a particle swarm-genetic algorithm based on the hybrid algorithm strategy. According to the test function, the single and the proposed algorithm are tested, respectively. The results show that the algorithm can maintain the good local search performance of the particle swarm optimization algorithm and also utilizes the good global search ability of the genetic algorithm (GA) and has good algorithm performance. Experiments on each community detection algorithm on real network and artificially generated network data sets show that the particle swarm-genetic algorithm has better efficiency in large-scale complex real networks or artificially generated networks.


Author(s):  
Cheng Zhang ◽  
Xinhong Hei ◽  
Dongdong Yang ◽  
Lei Wang

In recent years, community detection has become a hot research topic in complex networks. Many of the proposed algorithms are for detecting community based on the modularity Q. However, there is a resolution limit problem in modularity optimization methods. In order to detect the community structure more effectively, a memetic particle swarm optimization algorithm (MPSOA) is proposed to optimize the modularity density by introducing particle swarm optimization-based global search operator and tabu local search operator, which is useful to keep a balance between diversity and convergence. For comparison purposes, two state-of-the-art algorithms, namely, meme-net and fast modularity, are carried on the synthetic networks and other four real-world network problems. The obtained experiment results show that the proposed MPSOA is an efficient heuristic approach for the community detection problems.


2014 ◽  
Vol 599-601 ◽  
pp. 1453-1456
Author(s):  
Ju Wang ◽  
Yin Liu ◽  
Wei Juan Zhang ◽  
Kun Li

The reconstruction algorithm has a hot research in compressed sensing. Matching pursuit algorithm has a huge computational task, when particle swarm optimization has been put forth to find the best atom, but it due to the easy convergence to local minima, so the paper proposed a algorithm ,which based on improved particle swarm optimization. The algorithm referred above combines K-mean and particle swarm optimization algorithm. The algorithm not only effectively prevents the premature convergence, but also improves the K-mean’s local. These findings indicated that the algorithm overcomes premature convergence of particle swarm optimization, and improves the quality of image reconstruction.


2021 ◽  
Vol 13 (13) ◽  
pp. 2514
Author(s):  
Qianwei Dai ◽  
Hao Zhang ◽  
Bin Zhang

The chaos oscillation particle swarm optimization (COPSO) algorithm is prone to binge trapped in the local optima when dealing with certain complex models in ground-penetrating radar (GPR) data inversion, because it inherently suffers from premature convergence, high computational costs, and extremely slow convergence times, especially in the middle and later periods of iterative inversion. Considering that the bilateral connections between different particle positions can improve both the algorithmic searching efficiency and the convergence performance, we first develop a fast single-trace-based approach to construct an initial model for 2-D PSO inversion and then propose a TV-regularization-based improved PSO (TVIPSO) algorithm that employs total variation (TV) regularization as a constraint technique to adaptively update the positions of particles. B by adding the new velocity variations and optimal step size matrices, the search range of the random particles in the solution space can be significantly reduced, meaning blindness in the search process can be avoided. By introducing constraint-oriented regularization to allow the optimization search to move out of the inaccurate region, the premature convergence and blurring problems can be mitigated to further guarantee the inversion accuracy and efficiency. We report on three inversion experiments involving multilayered, fluctuated terrain models and a typical complicated inner-interface model to demonstrate the performance of the proposed algorithm. The results of the fluctuated terrain model show that compared with the COPSO algorithm, the fitness error (MAE) of the TVIPSO algorithm is reduced from 2.3715 to 1.0921, while for the complicated inner-interface model the fitness error (MARE) of the TVIPSO algorithm is reduced from 1.9539 to 1.5674.


Sign in / Sign up

Export Citation Format

Share Document