An improved ant colony algorithm based on artificial potential field and quantum evolution theory

2021 ◽  
pp. 1-16
Author(s):  
Longzhen Zhai ◽  
Shaohong Feng

The optimal evacuation route in emergency evacuation can further reduce casualties. Therefore, path planning is of great significance to emergency evacuation. Aiming at the blindness and relatively slow convergence speed of ant colony algorithm path planning search, an improved ant colony algorithm is proposed by combining artificial potential field and quantum evolution theory. On the one hand, the evacuation environment of pedestrians is modeled by the grid method. Use the potential field force in the artificial potential field, the influence coefficient of the potential field force heuristic information, and the distance between the person and the target position in the ant colony algorithm to construct comprehensive heuristic information. On the other hand, the introduction of quantum evolutionary theory. The pheromone is represented by quantum bits, and the pheromone is updated by quantum revolving door feedback control. In this way, it can not only reflect the high efficiency of quantum parallel computing, but also have the better optimization ability of ant colony algorithm. A large number of simulation experiments show that the improved ant colony algorithm has a faster convergence rate and is more effective in evacuation path planning.

2021 ◽  
Vol 2095 (1) ◽  
pp. 012062
Author(s):  
Peigang Li ◽  
Pengcheng Li ◽  
Yining Xie ◽  
Xianying Feng ◽  
Bin Hu ◽  
...  

Abstract The path planning algorithm of unmanned construction machinery is studied, and the potential field ant colony algorithm is improved to be applied in the field of unmanned construction machinery. Firstly, the raster map modeling was optimized to eliminate the trap grid in the map. At the beginning of algorithm iteration, the heuristic information of artificial potential field method was added and the global pheromone updating model was improve the convergence speed of the algorithm. In addition, the weight coefficient of potential field force and local pheromone updating model were introduced to enhance the development of raster map in the later iteration of ant colony algorithm and reduce the influence of heuristic information of potential field force. Finally, the selection range of parameters such as optimal pheromone heuristic factor and ant colony number is determined by simulation, and it is verified that the algorithm is better than the basic ant colony algorithm.


2018 ◽  
Vol 228 ◽  
pp. 01010
Author(s):  
Miaomiao Wang ◽  
Zhenglin Li ◽  
Qing Zhao ◽  
Fuyuan Si ◽  
Dianfang Huang

The classical ant colony algorithm has the disadvantages of initial search blindness, slow convergence speed and easy to fall into local optimum when applied to mobile robot path planning. This paper presents an improved ant colony algorithm in order to solve these disadvantages. First, the algorithm use A* search algorithm for initial search to generate uneven initial pheromone distribution to solve the initial search blindness problem. At the same time, the algorithm also limits the pheromone concentration to avoid local optimum. Then, the algorithm optimizes the transfer probability and adopts the pheromone update rule of "incentive and suppression strategy" to accelerate the convergence speed. Finally, the algorithm builds an adaptive model of pheromone coefficient to make the pheromone coefficient adjustment self-adaptive to avoid falling into a local minimum. The results proved that the proposed algorithm is practical and effective.


Sign in / Sign up

Export Citation Format

Share Document